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Abstract: This paper introduces an eigenvalue method of transforming the hyperbolic partial differential equations of

a particular unsteady friction water hammer model into characteristic form. This method is based on the solution of the

corresponding one-dimensional Riemann problem that transforms hyperbolic quasi-linear equations into ordinary

differential equations along the characteristic directions, which in this case arises as the eigenvalues of the system. A

mathematical justification and generalization of the eigenvalues method is provided and this approach is compared to

the traditional characteristic method.
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1. INTRODUCTION

Water hammer analysis is crucially important
for estimating a variety of worst-case and
events in a Water
(WDS). In
transients occur whenever flow conditions are

challenging transient

Distribution ~ Systems essence,
changed, but they are generally most important
when rapid changes occur, say associated with
power failure events, valve operations or fire
fighting. Transient events are generally
characterized by fluctuating pressures and
velocities and are important precisely because
these fluctuations can be of high magnitude,
possibly large enough to break or damage pipes
or other equipment, or to disrupt delivery
conditions (Boulos et al., 2004).

Transient flow in pipes is described by
nonlinear  hyperbolic  partial  differential
equations which are derived from the continuity
and momentum equations. A general solution of

these equations is impossible due to the

nonlinearity of the momentum equation and the
complexity of both pipe networks and the
associated boundary conditions.  Various
methods have been developed for analyzing
transient flow in pressurized conduits. By
linearizing the friction term and dropping other
nonlinear terms in the equations of momentum
and continuity, an approximate analytical
solution to the equations may be found for
sine-wave oscillations (Wylie and Streeter,
1993; Chaudhry, 1987).

function can be handled by the so-called

Any periodic forcing

Impedance method (Suo and Wylie, 1989) or
Transfer matrix method (Chaudhry, 1987); the
forcing function is decomposed into various
harmonics by Fourier analysis, and each
harmonic is analyzed separately. Since all the
equations and relationships are linear, the
system response can be determined by
superposition of individual responses, although
there is, of course, an error introduced through

the original linearization of the friction term.
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The method of characteristics is the most
popular approach for solving hydraulic transient
problems; it transforms the partial differential
equations of the continuity and momentum
relations into ordinary differential equations
(Abbott, 1966; Wylie and Streeter, 1993). These
ordinary differential equations are then

integrated to obtain a finite difference
representation of the variables. The method of
characteristics has several advantages including
a firmly established stability criterion, an
explicit solution so that different elements that
are physically removed from one another in a
system are handled independently, a procedure
that is relatively simple, an approximation that is
readily recognized, a high numerical accuracy
when executed properly along the characteristic
and, for elementary

curves, systems, an

implementation that includes a physical
interpretation that is simple, yet precise (Wylie
and Streeter, 1993). The traditional derivation of
the characteristic equations is to combine the
governing partial differential equations using an
unknown multiplier. Values of this multiplier are
determined by setting combinations of the terms
involving partial derivatives to be equivalent to
total derivatives (Wylie and Streeter, 1993;
Chaudhry, 1987). Another approach, presented
by Ghidaoui and Karney (1995), is to introduce
a modified transformation of the hyperbolic
partial differential equations into characteristic
form using the total derivative concept for both
open-channel and water-hammer applications.
This modified differential equation shows the
same characteristic form as the traditional
method of characteristics and also transforms
the governing hyperbolic equations.

Although this basic form of the governing
equations is well known, a few challenging
questions arise in the context of transient
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analysis work, such as the unsteady friction
problem. Classical water hammer theory based
on the assumptions of linear elastic behavior of
the pipe-walls and quasi-steady friction losses is
used to predict the maximum and minimum
pressure surges. This approach is relatively
accurate for simulating hydraulic transients in
metal pipe, but it is considerably less precise for
plastic pipes, particularly when the surge is
generated by rapid changes in flow conditions.
The characterization of unsteady friction is a
challenging question and research is on-going
(Brunone et al., 1991; Vitkovsky, 2001).

This paper presents an alternative method of
transforming the hyperbolic partial different- tial
equations of the unsteady friction water hammer
model into characteristic form. This method is
based on the solution of the corresponding
one-dimensional Riemann problem and has been
applied to several applications such as finding
exact or approximate solutions of the shallow
water equations (Kulikovskii et al., 2001;
Weiyan, 1992); however, this method has not
been, despite its wide applications for many
kinds
explicitly applied to the water hammer equations.

of quasi-linear hyperbolic systems,
Although the quasi-linear hyperbolic system of
unsteady friction water hammer equations
cannot be obtained as an exact solution with
Riemann invariants (Kulikovskii et al., 2001),
the transformed equations can be conveniently
handled

provides crucial insight how the information is

numerically. The transformation
propagated along characteristic lines as well as
the role of the simplified characteristic equations.
A mathematical generalization of the eigenvalue
approach 1is, for the first time, applied to the
unsteady  friction water hammer model.
Although the method of characteristics is also

applied to the same hyperbolic system and
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results in the same final system of equations as
the eigenvalue approach, additional insight is
achieved through the new approach.

2. EIGENVALUE APPROACH OF
HYPERBOLIC PARTIAL DIFFER-
ENTIAL EQUATION

The simplest hyperbolic equation is the linear
scalar problem as follows:

u +au, =0 (1

with initial data wu(x, 0) = wue(x), where u =
dependent variable, ¢ = time; x = distance; a =
constant and partial derivatives are written as

subscripted variables. The solution is

u(x,t) =uy(x—at) 2)

as is easily checked by differentiation. This
form indicates that the solution at any time is a
copy of the original function, but shifted by a
distance at. In other words, the solution at (x,
f) depends only on the value of &=x—-ar
which geometrically defines a characteristic
curve. If the dependent variable is an n-vector,

the hyperbolic equation is written as follows:

AT, =0 (3)

where U = (uy, us, ..
If A is diagonalizable, there must exist an
invertible matrix P and a diagonal matrix A =
P'4P where P' = inverse of P. Using this
identity, (3) can be rewritten as

V,+P APV, =0 4)

where ¥ = P~'%. This is clearly equivalent to

., u,) and A4 is n x p matrix.
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n independent scalar equations as follows:

W)+ 4, =0, j=1,..,n. (5)

That is, the nxn linear system (3) has »n
characteristic speeds, given by the eigenvalues
of 4. It A = A(x, t), then as above, the
characteristic speeds A (x, #) also vary. The
eigencomponents w; propagate without inter-
action, except at boundaries where an incoming
component can reflect energy into an outgoing
component (Strikwerda, 1989).

3. APPLICATION FOR UNSTEADY
FRICTION WATER HAMMER
MODEL

The following water hammer model
(Vitkovsky, 2001) is based on the model by
Brunone et al. (1991) with improvements
associated with using extended energy and
momentum concepts. These improvements arise
from derivations that include the velocity
distribution to infer extra terms needed to
describe unsteady friction in the familiar one
dimensional water hammer model. The two
hyperbolic PDEs representing the momentum
equation and the relation of mass conservation
of transient flow in closed conduits are written
in this way as

2
L1=H,+%Vx=0 (6)

L, =Hx+iV,+ a4
g 2gD

2 va-saNm) =0 )
g

where x = distance along the centerline of the
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conduit; ¢ = time; H = piezometirc head; V =
fluid velocity; D = inside pipe diameter; a =
celerity of the shock wave; g = acceleration due
to gravity; f = the steady state Darcy-Weisbach
friction factor; & = unsteady friction coefficient
and ‘SGN’ stands for the sign of the velocity. By
defining s=SGN(V-¥,) and multiply (7)
by g/(1+k), the momentum equation can be

rewritten as

&y oy ey, M
1+4&

= 8
U4k Y 2D(1+k) ®)

Combining (8) with (6) yields

0+ A, =b ©)

- [V 1+k
where % = }, A=l and

.44
2D(1+k)

St
Il

0

Equation (9) is of the same basic form as (3)
with the key difference being the additional
vector that frictional

column represents

eigenvalues of A are
Ay, =—as/(1+k), and the

and A,
are E:[g,as]T and P2=[g,—as(l+k)]T,

dissipation. The
A, =as and

corresponding eigenvectors for A

respectively. In order to transform matrix 4
into diagonal form, the identity P'AP=A is
used in which

P=[RPZ]=[g .. } (10)

as —as(1+k)
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The matrix A is here a diagonal matrix and
its entries are the eigenvalues of the matrix A.
Introducing a new variable # =PV into (9)

and multiplying the resulting equation by P~

produces

V,+AV, =Pb (11)

i as 0
where A=P AP=
0 -—as/(l1+k)
T
O A
2Dg(2+k) 2Dg(2+k)(1+k)

The definition of total derivative of ¥ is
given by

& _3 +1(ﬂ]vx (12)

dt dt

where I = identity matrix; and dx/drf = vector

defining the path of transformation of Vv .
Substituting v, of (11) into (12) and

rearranging produces

i:(A—IQJGﬁP‘IZ (13)
dt d

If dx/dt is defined as A, the first term of RHS
is eliminated and (13) can be simplified as
follows:

&
Zop 14
” (14)

Equation (14) shows that the quasilinear
hyperbolic system can be transformed into
characteristic form along the characteristic lines

given by the eigenvalues of the system. The
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rationale underlying the characteristic form is
that, by an appropriate choice of coordinates, the
original system of hyperbolic first-order
equations can be replaced by a simplified
coordinates.
the natural

coordinates of the system in the sense they

system in the characteristic

Characteristic coordinates are
simplify the form and expression of the physical
relations that govern the hyperbolic system.

Due to the non-constant term on the RHS, the
hyperbolic system cannot be written exactly as
Riemann invariants (Kulikovskii ef al., 2001);
but the invariant-like term provides an important
role in finding the numerical solution of the
systems and in understanding how information
is propagated along the characteristic directions.
Equation (14) can be integrated to yield finite
difference equations, which are conveniently

handled numerically. To convert the new

dependent  variables to  original ones,
substituting ¥ = P™'# into (14) yields
Iekav 1aH __ SV
g dt as dt 2Dg
dx
along —=as 15
g — (15)
Ldv_1dH P
gdt as dt 2Dg(1+k)
dx as
along —=—— 16
& vk (16)

4. APPROACH WITH THE METHOD
OF CHARACTERISTICS

Traditionally, the method of characteristics
(MOC) has been one of the simplest and most
computationally efficient techniques used to

solve the unsteady state pipe flow equations
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(Wylie and Streeter, 1993; Vitkovsky, 2001).
The basis for the method is the ability to
transform the partial differential equations into
ordinary differential equations that apply along
The MOC,
being an extremely flexible solution scheme,

specific lines called characteristics.

can be easily implemented in networks, at
boundary conditions for non-pipe elements and

with a variety of frictional forms. In addition,

the MOC is well suited to handling
discontinuities such as those caused by
instantaneous changes in conditions. A linear

combination of the equations (1) and (2) can be
described by AL, + L, and results in

ﬁ(H, +le)+ 1+k{Vt , atks + 2a) Vx]
A g (1+k)
+——ﬂ/IV|=o (17)
2gD

The partial derivatives in (17) are transformed
into total derivatives along the characteristic
lines following

dx 1 _ alks+2a) (18)
a i (1+k)

The solution of (18) from the multiplier A4
can be found using the quadratic formula,
producing the solutions

A= —l- and —(l+k)
as as

(19)

Therefore, (17) is now expressed in terms of
total derivatives as

JAH Vskdv W]

(20)
dt g dt 2gD
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The solutions for the multiplier A are
substituted into (20) forming two compatibility
equations and the resulting equations are
identical to those in (15) and (16).

5. CONCLUSION

The equations of continuity and momentum
that govern the water hammer problem can be
transformed into ordinary differential equations
using an eigenvalue approach. The mathematical
procedure to transform a one dimensional
differential
characteristic form is straightforward and the

quasilinear partial system into
simplified form of the system clearly shows how

the information in hyperbolic systems is
propagated along the characteristic lines defined
by the eigenvalues of the system. In addition,
it is shown that the method presents the same
form as the traditional method of characteristics.
Thus, the new approach has same flexibility and
ease of implementation for the many different
boundary conditions found in pipe network
applications.

The basic rationale underlying both methods
is that, by an appropriate choice of coordinates,
the original system of hyperbolic equations can
be replaced by a system whose coordinates are
the characteristics. The simplification of the
method of characteristics is particularly useful
when applied to problems involving one or two
in two
variables, but the eigenvalue approach is more

first-order equations independent
widely applied for many kinds of quasi-linear

hyperbolic systems.

REFERENCES

Abbott, M.B. (1966). 4n introduction to the
method of characteristics. Thames and

Hudson. NY.

Water Engineering Research, Vol. 5, No. 4, 2004

Boulos, P.F., Lansey, K.E. and Karney, B.W.
(2004). Comprehensive water distribution
systems analysis handbook for engineers
and planners. MWH Soft, Inc. Publ,
Pasadena, CA.

Brunone, B., Golia, UM., Greco, M. (1991).
“Some remarks on the momentum equations
for fast transients.” International Meeting on
Hydraulic  Tramnsients  with  Column
Separation, 9" Round Table, IAHR, Valencia,
Spain, pp. 201-209.

Chaudhry, M.H. (1987). Adpplied hydraulic
transients. 2d ed., Van Nostrand Reinhold,
NY.

Ghidaoui, M.S. and Karney, B.W. (1995).
“Modified transformation and integration of
1D wave equations.” Journal of Hydraulic
Engineering, ASCE, Vol. 121, No. 10, pp.
758-760.

Kulikovskii, A.G., Pogorelov, N.V. and Semenov,
AY. (2001).
numerical solution of hyperbolic systems.
Chapman & Hall/CRC, NY.

Strikwerda, J.C. (1989).
schemes and partial differential equations.
Wadsworth & Brooks, CA.

Suo, L. and Wylie, E. B. (1989). “Impulse
response method for frequency-dependent
pipeline transient.” of Fluids
Engineering, ASME, Vol. 111, No. 4, pp.
478-483.

Vitkovsky, J.P. (2001). Inverse analysis and
modeling of unsteady pipe flow: theory,

Mathematical aspects of

Finite difference

Journal

applications and experimental verification.
Ph.D. dissertation, University of Adelaide,
Adelaide, SA, Australia.

Weiyan, T. (1992). Shallow water hydro-
dynamics. Water & Power Press, Beijing,
China.



Water Engineering Research, Vol. 5, No. 4, 2004

Wylie, E.B. and Streeter, V.L. (1993). Fluid
Transients in Systems. Englewood Cliffs, NJ.

Ph.D. Candidate, Department of Civil
Engineering, University of Toronto, 35 St.
George St., Toronto, ON, M5S 1A4, Canada

183

(e-mail: jung@ecf.utoronto.ca)

Professor, Department of Civil Engineering,
University of Toronto, 35 St. George St.
Toronto, ON, M5S 1A4, Canada

(e-mail: karney@ecf.utoronto.ca)



