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DETERMINANTS OF THE LAPLACIANS ON THE

n-DIMENSIONAL UNIT SPHERE Sn (n = 8, 9)

Junesang Choi

Abstract. During the last three decades, the problem of evalua-
tion of the determinants of the Laplacians on Riemann manifolds
has received considerable attention by many authors. The func-
tional determinant for the n-dimensional sphere Sn with the stan-
dard metric has been computed in several ways. Here we aim at
computing the determinants of the Laplacians on Sn (n = 8, 9) by
mainly using ceratin known closed-form evaluations of series involv-
ing Zeta function.

1. Introduction and preliminaries

During the last three decades, the problem of evaluation of the de-
terminants of the Laplacians on Riemann manifolds has received con-
siderable attention by many authors including (among others) D’Hoker
and Phong [9, 10], Sarnak [14] and Voros [20], who computed the de-
terminants of the Laplacians on compact Riemann surfaces of constant
curvature in terms of special values of the Selberg Zeta function. Al-
though the first interest in the determinants of the Laplacians arose
mainly for Riemann surfaces, it is also interesting and potentially use-
ful to compute these determinants for classical Riemannian manifolds of
higher dimensions, such as spheres. Here, we are particularly concerned
with the evaluation of the functional determinant for the n-dimensional
sphere Sn (n = 8, 9) with the standard metric.
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For this purpose we need the following definitions. Let {λn} be a
sequence such that

(1.1) 0 = λ0 < λ1 5 λ2 5 · · · 5 λn 5 · · · ; λn ↑ ∞ (n→∞);

henceforth we consider only such nonnegative increasing sequences di-
verging to infinity. Then we can show that

(1.2) Z(s) :=

∞∑
n=1

1

λsn
,

which is known to converge absolutely in a half-plane <(s) > σ for some
σ ∈ R.

Definition 1 (cf. Osgood et al. [12]). The determinant of the
Laplacian ∆ on the compact manifold M is defined to be

(1.3) det′∆ :=
∏
λk 6=0

λk,

where {λk} is the sequence of eigenvalues of the Laplacian ∆ on M .
The sequence {λk} is known to satisfy the condition as in (1.1), but the
product in (1.3) is always divergent; so, in order for the expression (1.3)
to make sense, some sort of regularization procedure must be used. It is
easily seen that, formally, e−Z

′(0) is the product of nonzero eigenvalues
of ∆. This product does not converge, but Z(s) can be continued analyt-
ically to a neighborhood of s = 0. Therefore, we can give a meaningful
definition:

(1.4) det′∆ := e−Z
′(0),

which is called the Functional Determinant of the Laplacian ∆ on M.

Definition 2. The order µ of the sequence {λk} is defined by

(1.5) µ := inf

{
α > 0

∣∣∣∣ ∞∑
k=1

1

λαk
<∞

}
.

The analogous and shifted analogous Weierstrass canonical products
E(λ) and E(λ, a) of the sequence {λk} are defined, respectively, by

(1.6) E(λ) :=

∞∏
k=1

{(
1− λ

λk

)
exp

(
λ

λk
+

λ2

2λ2k
+ · · ·+ λ[µ]

[µ]λ
[µ]
k

)}
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and
(1.7)

E(λ, a) :=

∞∏
k=1

{(
1− λ

λk + a

)
exp

(
λ

λk + a
+ · · ·+ λ[µ]

[µ] (λk + a)[µ]

)}
,

where [µ] denotes the greatest integer part in the order µ of the sequence
{λk}.

There exists the following relationship between E(λ) and E(λ, a) (see
Voros [20]):

(1.8) E(λ, a) = exp

 [µ]∑
m=1

Rm−1(−a)
λm

m!

 E(λ− a)

E(−a)
,

where, for convenience,

(1.9) R[µ](λ− a) :=
d[µ]+1

dλ[µ]+1
{− logE(λ, a)} .

The shifted series Z(s, a) of Z(s) in (1.2) by a is given by

(1.10) Z(s, a) :=

∞∑
k=1

1

(λk + a)s
.

Formally, indeed, we have

Z ′(0,−λ) = −
∞∑
k=1

log(λk − λ),

which, if we define

(1.11) D(λ) := exp
[
−Z ′(0,−λ)

]
,

immediately implies that

D(λ) =
∞∏
k=1

(λk − λ).

In fact, Voros [20] gave the relationship between D(λ) and E(λ) as
follows:

(1.12)

D(λ) = exp[−Z ′(0)] exp

− [µ]∑
m=1

FPZ(m)
λm

m


· exp

− [µ]∑
m=2

C−m

(
m−1∑
k=1

1

k

)
λm

m!

E(λ),
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where an empty sum is understood to be nil and the finite part pre-
scription is applied (as usual) as follows (cf. Voros [20, p. 446]):
(1.13)

FPf(s) :=


f(s), if s is not a pole,

lim
ε→0

(
f(s+ ε)− Residue

ε

)
, if s is a simple pole,

and

(1.14) Z(−m) = (−1)mm!C−m.

Now consider the sequence of eigenvalues on the standard Laplacian
∆n on Sn. It is known from the work of Vardi [19] (see also Terras [18])
that the standard Laplacian ∆n (n ∈ N) has eigenvalues

(1.15) µk := k(k + n− 1)

with multiplicity
(1.16)

qn(k) :=

(
k + n

n

)
−
(
k + n− 2

n

)
=

(2k + n− 1) (k + n− 2)!

k! (n− 1)!

=
2k + n− 1

(n− 1)!

n−2∏
j=1

(k + j) (k ∈ N0) ,

where N denotes the set of positive integers and N0 := N ∪ {0}. From

now on we consider the shifted sequence {λk} of {µk} in (1.15) by
(
n−1
2

)2
as a fundamental sequence. Then the sequence {λk} is written in the
following simple and tractable form:

(1.17) λk = µk +

(
n− 1

2

)2

=

(
k +

n− 1

2

)2

with the same multiplicity as in (1.16).
We will exclude the zero mode, that is, start the sequence at k = 1

for later use. Furthermore, with a view to emphasizing n on Sn, we
choose the notations Zn(s), Zn(s, a), En(λ), En(λ, a), and Dn(λ) instead
of Z(s), Z(s, a), E(λ), E(λ, a), and D(λ), respectively.

We readily observe from (1.11) that

(1.18) Dn

((
n− 1

2

)2
)

= det′∆n,

where det′∆n denote the determinants of the Laplacians on Sn (n ∈ N).
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Several authors (see Choi [5], Kumagai [11], Vardi [19], and Voros
[20]) used the theory of multiple Gamma functions (see Barnes [1, 2, 3,
4]) to compute the determinants of the Laplacians on the n-dimensional
unit sphere Sn (n ∈ N}). Quine and Choi [13] made use of zeta regular-
ized products to compute det′∆n and the determinant of the conformal
Laplacian, det (∆Sn + n(n− 2)/4). Choi and Srivastava [7, 8] and Choi
et al. [6] made use of some known closed-form evaluations of the series
involving Zeta function (see [16, Chapter 3]) for the computation of the
determinants of the Laplacians on Sn (n = 2, 3, 4, 5, 6, 7). In the se-
quel, here, we aim at computing the determinants of the Laplacians on
Sn (n = 8, 9) by mainly using ceratin known closed-form evaluations of
series involving Zeta function.

2. Series associated with the Zeta functions

A rather classical (over two centuries old) theorem of Christian Gold-
bach (1690–1764), which was stated in a letter dated 1729 from Gold-
bach to Daniel Bernoulli (1700–1782), was revived in 1986 by Shallit
and Zikan [15] as the following problem:

(2.1)
∑
ω∈S

(ω − 1)−1 = 1,

where S denotes the set of all nontrivial integer kth powers, that is,

(2.2) S :=
{
nk | n, k ∈ N \ {1}

}
.

In terms of the Riemann Zeta function ζ(s) defined by

(2.3) ζ(s) :=



∞∑
n=1

1

ns
=

1

1− 2−s

∞∑
n=1

1

(2n− 1)s
(<(s) > 1)

1

1− 21−s

∞∑
n=1

(−1)n−1

ns
(<(s) > 0; s 6= 1),

Goldbach’s theorem (2.1) assumes the elegant form (cf. Shallit and
Zikan [15, p. 403]):

(2.4)

∞∑
k=2

{ζ(k)− 1} = 1
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or, equivalently,

(2.5)
∞∑
k=2

F (ζ(k)) = 1,

where F(x) := x− [x] denotes the fractional part of x ∈ R. As a matter
of fact, it is fairly straightforward to observe also that

(2.6)

∞∑
k=2

(−1)k F (ζ(k)) =
1

2
,

(2.7)
∞∑
k=1

F (ζ(2k)) =
3

4
, and

∞∑
k=1

F (ζ(2k + 1)) =
1

4
.

The Hurwitz (or generalized) Zeta function ζ(s, a) is defined by

(2.8) ζ(s, a) :=
∞∑
k=0

(k + a)−s (<(s) > 1; a 6∈ Z−0 ),

where Z−0 denotes the set of nonpositive integers. It is noted that both
the Riemann Zeta function ζ(s) and the Hurwitz Zeta function ζ(s, a)
can be continued meromorphically to the whole complex s-plane except
for a simple pole only at s = 1 with their residue 1. For easy reference,
we recall some properties of ζ(s) and ζ(s, a) as in the following lemma.

Lemma 1. Each of the following identities holds true.

(2.9) ζ(s) = ζ(s, 1) = (2s − 1)−1 ζ

(
s,

1

2

)
= 1 + ζ(s, 2).

(2.10) ζ(s, a) = ζ(s, n+ a) +

n−1∑
k=0

(k + a)−s (n ∈ N).

(2.11) ζ(s) = ζ(s, n+ 1) +

n∑
k=1

k−s (n ∈ N0),
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where an empty sum is understood to be nil (as usual) throughout this
paper.

(2.12) ζ(−n) =


− 1

2
(n = 0)

− Bn+1

n+ 1
(n ∈ N),

where Bn are the Bernoulli numbers (see [16, Section 1.6]).

(2.13) ζ(−2n) = 0 (n ∈ N),

which are often referred to as the trivial zeros of ζ(s).

(2.14) ζ ′(−2n) = lim
ε→0

ζ(−2n+ ε)

ε
= (−1)n

(2n)!

2(2π)2n
ζ(2n+ 1) (n ∈ N).

(2.15) ζ ′(0) = −1

2
log(2π).

(2.16) lim
s→1

{
ζ(s, a)− 1

s− 1

}
= −ψ(a),

where ψ denotes the Psi-(or Digamma) function defined by ψ(a) :=
Γ′(a)/Γ(a), Γ being the Gamma function.

(2.17) ψ(n) = −γ +
n−1∑
k=1

1

k
(n ∈ N)

and

(2.18) ψ

(
n+

1

2

)
= −γ − 2 log 2 + 2

n−1∑
k=0

1

2k + 1
(n ∈ N0),

where γ denotes the Euler-Mascheroni constant defined by
(2.19)

γ := lim
n→∞

(
n∑
k=1

1

k
− log n

)
∼= 0.57721 56649 01532 86060 6512 · · · .

Employing the various methods and techniques used in the vast lit-
erature on the subject of the closed-form evaluations series associated
with the Zeta functions, Srivastava and Choi (see [16, Chapter 3], [17,
Chapter 3], and see also the related references therein) presented a rather
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extensive collection of closed-form sums of series involving the Zeta func-
tions. For the use in the next section, we recall two general formulas as
in the following lemma (see [17, p. 254]).

Lemma 2. Each of the following identities holds true.
(2.20)
∞∑
k=1

ζ(2k, a)

k + n
t2k+2n =

2n∑
k=0

(
2n

k

) [
ζ ′(−k, a− t) + (−1)k ζ ′(−k, a+ t)

]
t2n−k

−
n−1∑
`=0

ζ(−2`, a)

n− `
t2n−2` − 2 ζ ′(−2n, a) (n ∈ N0; |t| < |a|)

and
(2.21)

∞∑
k=1

ζ(2k + 1, a)

k + n+ 1
t2k+2n+2

=
2n+1∑
k=0

(
2n+ 1

k

) [
ζ ′(−k, a− t)− (−1)kζ ′(−k, a+ t)

]
t2n+1−k

−
n∑
`=1

ζ(1− 2`, a)

n− `+ 1
t2n+2−2` − t2n+2

n+ 1
[ψ(2n+ 2)− ψ(a) + γ]

− 2 ζ ′(−2n− 1, a) (n ∈ N0; |t| < |a|).

By using the formulas in Lemma 1, we give some special cases of
(2.20) and (2.21) for the direct use in the next section as in the following
lemma.

Lemma 3. Each of the following identities holds true.
(2.22)

∞∑
k=4

ζ(2k, 5)

k + 1
42k+2 =

13408900

729
− 128 ζ(2)− 4096

3
ζ(4)− 16384 ζ(6)

− 16 log π − 32 log 2− 13 log 3 + log 5 + 9 log 7.

(2.23)
∞∑
k=3

ζ(2k, 5)

k + 2
42k+4 =

1674592

81
− 4096

3
ζ(2)− 48 ζ(3)

π2
− 16384 ζ(4)

− 256 log π − 512 log 2− 145 log 3 + log 5 + 81 log 7.
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(2.24)
∞∑
k=2

ζ(2k, 5)

k + 3
42k+6 =

350752

9
− 16384 ζ(2)− 1920

ζ(3)

π2
+

360 ζ(5)

π4

− 4096 log π + 278528 log 2 + 63119 log 3 + 35841 log 5 + 50905 log 7.

(2.25)
∞∑
k=1

ζ(2k, 5)

k + 4
42k+8 = 238240− 57344

ζ(3)

π2
+ 26880

ζ(5)

π4
− 5040

ζ(7)

π6

− 65536 log π − 131072 log 2− 12865 log 3 + log 5 + 6561 log 7.

(2.26)
∞∑
k=1

ζ(2k + 1, 92)

k + 1

(
7

2

)2k+2

=
1729

60
− 49

4
γ+

91

12
log 2 + 6 log 3 + 3 ζ ′(−1).

(2.27)
∞∑
k=1

ζ(2k + 1, 92)

k + 2

(
7

2

)2k+4

=
67669

320
− 2401

32
γ +

65519

480
log 2 +

70

8
log 3

− 223

8
log 5− 343

8
log 7 +

147

2
ζ ′(−1) + 2 ζ ′(−3).

(2.28)
∞∑
k=1

ζ(2k + 1, 92)

k + 3

(
7

2

)2k+6

= −9057797

11520
− 117649

192
γ − 34291656

4032
log 2

+
126985

16
log 3 +

106007

32
log 5 +

554631

32
log 7

+
12005

8
ζ ′(−1) + 245 ζ ′(−3) +

31

16
ζ ′(−5).

(2.29)
∞∑
k=1

ζ(2k + 1, 92)

k + 4

(
7

2

)2k+8

=
3968124853

184320
− 5764801

1024
γ − 272293951

15360
log 2

+
80311

128
log 3 +

10039

16
log 5 +

823543

64
log 7

+
823543

32
ζ ′(−1) +

84035

8
ζ ′(−3) +

1029

2
ζ ′(−5) +

255

64
ζ ′(−7).
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3. The determinants of the Laplacians on Sn (n = 8, 9)

Here, by using (1.18) and the results in the previous sections, we are
ready to compute the determinants of the Laplacians on Sn (n = 8, 9)
as asserted by the following theorem.

Theorem. The determinants of the Laplacians on Sn (n = 8, 9)
are given as follows:
(3.1)

det′∆8 =2−
11394059
483840 3

8761093
322560 3

1226899
107520 7

2445697
46080 exp

[
−178808399

22118400
− 159763

26880
ζ ′(−1)

−38257

11520
ζ ′(−3)− 49

240
ζ ′(−5)− 1

1260
ζ ′(−7)

]
.

(3.2)

det′∆9 =2−
506669
2520 3−

14285
504 5−

147
10 7−

3073
90 π

· exp

[
24546672397

1890
+

16399 ζ(3)

10080π2
− 2087 ζ(5)

1920π4
+

31 ζ(7)

128π6
− ζ(9)

128π8

]
.

Proof. det′∆8: In view of (1.15), the sequence {µk} of eigenvalues
on the standard Laplacian ∆8 on S8 is given as follows: µk := k(k + 7)
with multiplicity q8(k). Here we consider the shifted sequence {λk} of

{µk} by
(
7
2

)2
as a fundamental sequence. Then the sequence {λk} is

written in the following simple and tractable form:

(3.3) λk = µk +

(
7

2

)2

=

(
k +

7

2

)2

with the same multiplicity q8(k). It is noted that λk has the order
µ = 8/2 = 4. The involved Zeta function Z8(s) is given by

Z8(s) =
1

2520

∞∑
k=1

q8(k)

(k + 7/2)2s

=
1

2520

∞∑
k=1

(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)

(k + 7/2)2s−1
.
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It is seen that
(3.4)

Z8(s) =
1

2520

{(
22s−7 − 1

)
ζ(2s− 7)− 35

4

(
22s−5 − 1

)
ζ(2s− 5)

+
259

8

(
22s−3 − 1

)
ζ(2s− 3)− 225

64

(
22s−1 − 1

)
ζ(2s− 1)

−259

128
22s − 6993

128

(
2

3

)2s

− 32375

128

(
2

5

)2s

− 411397

128

(
2

7

)2s
}
.

It is observed that Z8(s) has simple poles at s = 1, 2, 3, and 4 with their
respective residues − 5

7168 , 37
5760 , − 1

576 , and 1
5040 . So it is found that

FPZ8(1) = − 5383489

40642560
− 5

3584
γ − 5

1792
log 2;

FPZ8(2) = − 23520979

829785600
+

37

2880
γ +

37

1440
log 2− 5

512
ζ(3);

FPZ8(3) = − 62186808029

1143548280000
− 1

288
γ− 1

144
log 2+

259

2880
ζ(3)− 155

3584
ζ(5);

FPZ8(4) =− 40683977191604

196994059171875
+

1

2520
γ +

1

1260
log 2

− 7

288
ζ(3) +

1147

2880
ζ(5)− 635

3584
ζ(7).

It is seen that

log E8

(
49

4

)
=− 823543

92160

∞∑
k=1

ζ(2k + 1, 92 )

k + 4

(
7

2

)2k

+
117649

18432

∞∑
k=1

ζ(2k + 1, 92 )

k + 3

(
7

2

)2k

− 88837

46080

∞∑
k=1

ζ(2k + 1, 92 )

k + 2

(
7

2

)2k

+
35

2048

∞∑
k=1

ζ(2k + 1, 92 )

k + 1

(
7

2

)2k

− 364776727

4423680
ζ(3) +

6534074197

2949120
ζ(5)− 522949805

524288
ζ(7)− 2608692457019

2187000000
.

It follows from (1.12) and (1.18) that
(3.5)

det′∆8 = D8

(
49

4

)
= exp

[
−Z ′8(0)

]
exp

[
−

4∑
m=1

FPZ8(m)
1

m

(
49

4

)m]

· exp

[
−

4∑
m=2

C−m

(
m−1∑
k=1

1

k

)
1

m!

(
49

4

)m]
E8

(
49

4

)
.

Now it is easy to compute det′∆8 by putting the results in this and
previous sections in (3.5).
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det′∆9: Similarly as in obtaining det′∆8, we can compute det′∆9.
Therefore we just present the following two essential parts:

Z9(s) =
∞∑
k=1

q9(k)

(k + 4)2s

=
1

20160
[ζ(2s− 8)− 14 ζ(2s− 6) + 49 ζ(2s− 4)− 36 ζ(2s− 2)]

=
1

20160
[ζ(2s− 8, 5)− 14 ζ(2s− 6, 5) + 49 ζ(2s− 4, 5)− 36 ζ(2s− 2, 5)] ;

log E9(16) = − 1

20160

{ ∞∑
k=1

ζ(2k, 5)

k + 4
42k+8 − 14

∞∑
k=2

ζ(2k, 5)

k + 3
42k+6

+49
∞∑
k=3

ζ(2k, 5)

k + 2
42k+4 − 36

∞∑
k=4

ζ(2k, 5)

k + 1
42k+2

}
.
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