• Title/Summary/Keyword: Ricci symmetric manifold

Search Result 53, Processing Time 0.017 seconds

SOME NOTES ON LP-SASAKIAN MANIFOLDS WITH GENERALIZED SYMMETRIC METRIC CONNECTION

  • Bahadir, Oguzhan;Chaubey, Sudhakar K.
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.461-476
    • /
    • 2020
  • The present study initially identify the generalized symmetric connections of type (α, β), which can be regarded as more generalized forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained respectively when (α, β) = (1, 0) and (α, β) = (0, 1). Taking that into account, a new generalized symmetric metric connection is attained on Lorentzian para-Sasakian manifolds. In compliance with this connection, some results are obtained through calculation of tensors belonging to Lorentzian para-Sasakian manifold involving curvature tensor, Ricci tensor and Ricci semi-symmetric manifolds. Finally, we consider CR-submanifolds admitting a generalized symmetric metric connection and prove many interesting results.

On Quasi-Conformally Recurrent Manifolds with Harmonic Quasi-Conformal Curvature Tensor

  • Shaikh, Absos Ali;Roy, Indranil
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.109-124
    • /
    • 2011
  • The main objective of the paper is to provide a full classification of quasi-conformally recurrent Riemannian manifolds with harmonic quasi-conformal curvature tensor. Among others it is shown that a quasi-conformally recurrent manifold with harmonic quasi-conformal curvature tensor is any one of the following: (i) quasi-conformally symmetric, (ii) conformally flat, (iii) manifold of constant curvature, (iv) vanishing scalar curvature, (v) Ricci recurrent.

𝜂-RICCI SOLITONS ON 𝜖 - LP-SASAKIAN MANIFOLDS WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Haseeb, Abdul;Prasad, Rajendra
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.539-558
    • /
    • 2019
  • In this paper, we study ${\eta}$-Ricci solitons on ${\epsilon}$-LP-Sasakian manifolds with a quarter-symmetric metric connection satisfying certain curvature conditions. In particular, we have discussed that the Ricci soliton on ${\epsilon}$-LP-Sasakian manifolds with a quarter-symmetric metric connection satisfying certain curvature conditions is expanding or steady according to the vector field ${\xi}$ being timelike or spacelike. Moreover, we construct 3-dimensional examples of an ${\epsilon}$-LP-Sasakian manifold with a quarter-symmetric metric connection to verify some results of the paper.

EVOLUTION AND MONOTONICITY FOR A CLASS OF QUANTITIES ALONG THE RICCI-BOURGUIGNON FLOW

  • Daneshvar, Farzad;Razavi, Asadollah
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1441-1461
    • /
    • 2019
  • In this paper we consider the monotonicity of the lowest constant ${\lambda}_a^b(g)$ under the Ricci-Bourguignon flow and the normalized Ricci-Bourguignon flow such that the equation $$-{\Delta}u+au\;{\log}\;u+bRu={\lambda}_a^b(g)u$$ with ${\int}_{M}u^2dV=1$, has positive solutions, where a and b are two real constants. We also construct various monotonic quantities under the Ricci-Bourguignon flow and the normalized Ricci-Bourguignon flow. Moreover, we prove that a compact steady breather which evolves under the Ricci-Bourguignon flow should be Ricci-flat.

CERTAIN RESULTS ON CONTACT METRIC GENERALIZED (κ, µ)-SPACE FORMS

  • Huchchappa, Aruna Kumara;Naik, Devaraja Mallesha;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1315-1328
    • /
    • 2019
  • The object of the present paper is to study ${\eta}$-recurrent ${\ast}$-Ricci tensor, ${\ast}$-Ricci semisymmetric and globally ${\varphi}-{\ast}$-Ricci symmetric contact metric generalized (${\kappa}$, ${\mu}$)-space form. Besides these, ${\ast}$-Ricci soliton and gradient ${\ast}$-Ricci soliton in contact metric generalized (${\kappa}$, ${\mu}$)-space form have been studied.

EQUIVALENCE CONDITIONS OF SYMMETRY PROPERTIES IN LIGHTLIKE HYPERSURFACES OF INDEFINITE KENMOTSU MANIFOLDS

  • Lungiambudila, Oscar;Massamba, Fortune;Tossa, Joel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1259-1280
    • /
    • 2016
  • The paper deals with lightlike hypersurfaces which are locally symmetric, semi-symmetric and Ricci semi-symmetric in indefinite Kenmotsu manifold having constant $\bar{\phi}$-holomorphic sectional curvature c. We obtain that these hypersurfaces are totally goedesic under certain conditions. The non-existence condition of locally symmetric lightlike hyper-surfaces are given. Some Theorems of specific lightlike hypersurfaces are established. We prove, under a certain condition, that in lightlike hyper-surfaces of an indefinite Kenmotsu space form, tangent to the structure vector field, the parallel, semi-parallel, local symmetry, semi-symmetry and Ricci semi-symmetry notions are equivalent.

ON THE 𝜂-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS

  • Jun-ichi Inoguchi;Ji-Eun Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1303-1336
    • /
    • 2023
  • In this paper, we study the 𝜂-parallelism of the Ricci operator of almost Kenmotsu 3-manifolds. First, we prove that an almost Kenmotsu 3-manifold M satisfying ∇𝜉h = -2𝛼h𝜑 for some constant 𝛼 has dominantly 𝜂-parallel Ricci operator if and only if it is locally symmetric. Next, we show that if M is an H-almost Kenmotsu 3-manifold satisfying ∇𝜉h = -2𝛼h𝜑 for a constant 𝛼, then M is a Kenmotsu 3-manifold or it is locally isomorphic to certain non-unimodular Lie group equipped with a left invariant almost Kenmotsu structure. The dominantly 𝜂-parallelism of the Ricci operator is equivalent to the local symmetry on homogeneous almost Kenmotsu 3-manifolds.

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS

  • De, Uday Chand;Mondal, Abul Kalam
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • The object of the present paper is to study 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Among others it is proved that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic normal almost contact metric manifold is a constant multiple of the associated metric tensor and there does not exist a non-zero parallel 2-form. Also we obtain some equivalent conditions on a 3-dimensional normal almost contact metric manifold and we prove that if a 3-dimensional normal almost contact metric manifold which is not a ${\beta}$-Sasakian manifold satisfies cyclic parallel Ricci tensor, then the manifold is a manifold of constant curvature. Finally we prove the existence of such a manifold by a concrete example.