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GEOMETRY OF A SEMI-SYMMETRIC RECURRENT

METRIC CONNECTION

Jaeman Kim

Abstract. In the present paper, we study a semi-symmetric recurrent

metric connection and verify its various geometric properties.

1. Introduction

Let Mn = (Mn, g) be a Riemannian manifold of dimension n with a metric
tensor g. A linear connection ∇ on Mn satisfies

(i) ∇fX+gY Z = f∇XZ + g∇Y Z,
(ii) ∇X(fY ) = (Xf)Y + f∇XY ,

where f, g are smooth functions on Mn and X,Y, Z are smooth vector fields
on Mn. The torsion tensor T of ∇ is given by

T (X,Y ) = ∇XY −∇Y X − [X,Y ].

If the torsion tensor T vanishes, then ∇ is said to be symmetric, otherwise
it is non-symmetric. If the metric tensor g of Mn satisfies ∇g = 0, then
∇ is said to be a metric connection, otherwise it is non-metric. It is well
known that a linear connection is symmetric and metric if and only if it is the
Levi-Civita connection. In particular, a nonsymmetric connection ∇ is called
semi-symmetric if the torsion tensor T of ∇ satisfies

T (X,Y ) = u(Y )X − u(X)Y,

where u is a 1-form on Mn. An important research work was carried out on
the Riemannian manifold equipped with a semi-symmetric metric connection
in [13]. In fact, Yano [13] proved that a Riemannian manifold is conformally
flat if and only if it admits a semi-symmetric metric connection whose curva-
ture tensor vanishes. On the other hand Agashe and Chafle [1] introduced the
idea of a semi-symmetric non-metric connection on a Riemannian manifold and
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this was further developed by Binh, De and Sengupta [8]. Later on such a con-
nection on a Riemannian manifold equipped with certain geometric structures
was extensively studied by several authors [2, 3, 6]. In 2008, Tripathi showed a
unified theory of connection which unifies the concepts of various (non-)metric
connections such as semi-symmetric (non-)metric connections in [12]. Further-
more, as a particular case he mentioned a semi-symmetric recurrent metric
connection which has recently been studied in [14]. Considering this aspect we
are motivated to study such a connection. This paper is organized as follows:

Section 2 is devoted to verifying the symmetries and identities of curvature
with respect to the semi-symmetric recurrent metric connection under certain
conditions.

In Section 3, we investigate a weakly symmetric manifold equipped with the
semi-symmetric recurrent metric connection whose Ricci tensor vanishes.

In Section 4, we consider a Riemannian manifold with semi-symmetric recur-
rent metric connection whose associated vector field is concurrent, and study
some semisymmetry conditions on such a manifold.

2. Semi-symmetric recurrent metric connection and its curvature
properties

In [12], a linear connection ∇̄ on a Riemannian manifold Mn = (Mn, g) is
defined as

(1) ∇̄XY = ∇XY − u(X)Y,

where ∇ denotes the Levi-Civita connection and u is a 1-form on Mn. Using
(1), the torsion tensor T̄ of Mn with respect to the connection ∇̄ is given by

(2) T̄ (X,Y ) = u(Y )X − u(X)Y.

Further, using (1), we have

(3) (∇̄Xg)(Y,Z) = 2u(X)g(Y,Z).

A linear connection ∇̄ defined by (1) is called a semi-symmetric recurrent metric
connection [12] (briefly, SSRM connection). For instance, we can find a non-
trivial SSRM connection on a product manifold as follows:

Example. Let Mn = (Mn, gMn) be a Riemannian manifold. Then we have a
standard product Riemannian manifold Mn+1 of Mn with S1. Since S1 has a
nowhere vanishing vector field, we can choose such a vector field U tangent to
S1 at each point in Mn×S1 and so we obtain a non-trivial 1-form u associated
with U on Mn+1 = (Mn+1, g) by g(U,X) = u(X). Then we have a non-trivial
SSRM connection ∇̄ in Mn+1 by setting ∇̄XY = ∇XY − u(X)Y .

Analogous to the definition of curvature tensor R, Ricci tensor r, scalar
curvature s and Weyl curvature tensor W , we define the curvature tensor R̄,
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Ricci tensor r̄, scalar curvature s̄ and Weyl curvature tensor W̄ with respect
to SSRM connection ∇̄ by

(4) R̄(X,Y, Z, V ) = g(R̄(X,Y )Z, V ) = g(∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z, V ),

(5) r̄(Y, Z) =
∑

i=1,...,n

R̄(ei, Y, Z, ei),

s̄ =
∑

i=1,...,n

r̄(ei, ei)

and

W̄ (X,Y, Z, V ) = R̄(X,Y, Z, V )− s̄

2n(n− 1)
g • g(X,Y, Z, V )

− 1

n− 2
(r̄ − s̄

n
g) • g(X,Y, Z, V ),

where {ei}i=1,...,n is an orthonormal frame. Here the symbol • is the Nomizu-
Kulkarni product of symmetric (0,2)-tensors generating a curvature type tensor:

h • k(X,Y, Z,W ) = h(X,Z)k(Y,W ) + h(Y,W )k(X,Z)− h(X,W )k(Y, Z)

− h(Y,Z)k(X,W ).

Note that W = 0 if and only if Mn = (Mn, g) is conformally flat. The Weyl
curvature tensor depends only on the conformal class of Mn = (Mn, g). More-
over, it satisfies the curvature symmetries and so we can treat it as a conformal
curvature tensor. In particular, the Weyl curvature tensor is traceless.

A Riemannian manifold Mn = (Mn, g) is called Einstein with respect to ∇̄
if the Ricci tensor r̄ with respect to ∇̄ is proportional to the metric tensor g on
Mn, i.e., r̄ = s̄

ng. Concerning the symmetries and identities of curvature with
respect to SSRM connection, we obtain the following:

Theorem 2.1. Let Mn = (Mn, g) be a Riemannian manifold with SSRM
connection ∇̄. If the 1-form u in (1) is closed, then we have

(i) R̄(X,Y, Z,W ) = −R̄(Y,X,Z,W ),
(ii) R̄(X,Y, Z,W ) = −R̄(X,Y,W,Z),
(iii) R̄(X,Y, Z,W ) = R̄(Z,W,X, Y ),
(iv) R̄(X,Y, Z,W ) + R̄(Y,Z,X,W ) + R̄(Z,X, Y,W ) = 0,
(v) r̄(Y,Z) = r̄(Z, Y ),
(vi) Mn is Einstein with respect to ∇̄ if and only if Mn is Einstein.

Proof. From (4), it follows that (i) holds true. By virtue of (1) and (4), one
can see [12]

R̄(X,Y, Z,W ) = R(X,Y, Z,W )− 2du(X,Y )g(Z,W )

− 1

2
g(U,U)g(X,W )g(Y, Z) +

1

2
g(U,U)g(X,Z)g(Y,W ),(6)
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where U is a vector field given by g(U,X) = u(X). Taking account of (6) and
R(X,Y, Z,W ) +R(X,Y,W,Z) = 0, we obtain

R̄(X,Y, Z,W ) + R̄(X,Y,W,Z) = −4du(X,Y )g(Z,W ),

which yields from du = 0 that (ii) is valid. From (6), we immediately get

R̄(X,Y, Z,W )− R̄(Z,W,X, Y ) = −2du(X,Y )g(Z,W ) + 2du(Z,W )g(X,Y ).

By the help of du = 0, the above identity yields that (iii) holds. It follows from
(6) and the first Bianchi identity that

R̄(X,Y, Z,W ) + R̄(Y,Z,X,W ) + R̄(Z,X, Y,W )

= − 2du(X,Y )g(Z,W )− 2du(Y,Z)g(X,W )− 2du(Z,X)g(Y,W ).

By virtue of du = 0, the last identity yields that (iv) is valid. Taking account
of both (5) and (6), we have

(7) r̄(Y, Z) = r(Y,Z)− 1

2
(n− 1)g(U,U)g(Y, Z) + 2du(Y, Z).

Considering du = 0 and (7), we have r̄(Y, Z) = r̄(Z, Y ) and so (v) holds true.
Again from (7) and du = 0, it follows immediately that if Mn is Einstein with
respect to ∇̄, then Mn is Einstein, and vice versa. Therefore (vi) is valid too.
This completes the proof of Theorem 2.1. □

Concerning the scalar curvature s̄ with respect to ∇̄, we have:

Theorem 2.2. Let Mn = (Mn, g) (n ≥ 2) be a Riemannian manifold with
SSRM connection ∇̄. If s̄− s ≥ 0, then the connections ∇̄ and ∇ coincide.

Proof. Taking account of both (7) and the definition of s̄, we have

(8) s̄ = s− 1

2
n(n− 1)g(U,U),

since tr du = 0.
Thus if s̄ − s ≥ 0, the above identity yields U = 0, equivalently u = 0.

Therefore it follows from (1) that ∇̄ = ∇. The proof of Theorem 2.2 is com-
pleted. □

Concerning Weyl curvature tensors, we have:

Corollary 2.3. Let Mn = (Mn, g) (n ≥ 2) be a Riemannian manifold with
SSRM connection ∇̄. If s̄− s ≥ 0, then the Weyl curvature tensors W̄ and W
coincide.

Proof. It is an immediate consequence of Theorem 2.2. □

Let σp be a two-dimensional plane in the tangent space at a point p spanned
by vectors X, Y . Then the sectional curvature k(σp) is defined by

k(σp) = − R(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
.
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Sectional curvature k(σp) is uniquely determined by the plane σp and is inde-
pendent of the vectors X, Y in the plane σp. If the sectional curvature k(σp)
is a constant for all planes σp and each point p on Mn, then Mn is said to be a
space of constant curvature. Concerning sectional curvature k(σp), the follow-
ing fact [5] (namely, Schur’s theorem) is well known: If the sectional curvature
k(σp) is independent of the plane σp chosen at each point p on Mn, then Mn

is a space of constant curvature. Analogous to the definition of the sectional
curvature k(σp), we define the sectional curvature k̄(σp) with respect to ∇̄ by

k̄(σp) = − R̄(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
.

Concerning the sectional curvature k̄(σp) with respect to ∇̄, we obtain a gen-
eralized Schur’s theorem as follows:

Theorem 2.4. Let Mn = (Mn, g) be a Riemannian manifold with SSRM
connection ∇̄ whose 1-form u is closed. If the sectional curvature k̄(σp) with
respect to ∇̄ is independent of the plane σp chosen at each point p on Mn, then
Mn is a space of constant curvature with respect to ∇̄ if and only if the length
of the associated vector field U is constant.

Proof. As a well known fact [7], the curvature tensor is completely determined
by the sectional curvature. Therefore taking the curvature symmetries (i), (ii),
(iii) and (iv) in Theorem 2.1 into consideration, we have [7]

R̄(X,Y, Z,W ) = k̄(p)(g(X,W )g(Y,Z)− g(X,Z)g(Y,W )),

which yields from (5)

r̄(Y, Z) = (n− 1)k̄(p)g(Y, Z).

Taking account of du = 0, (7) and the above identity, we get

r(Y,Z) =
n− 1

2
(g(U,U) + 2k̄(p))g(Y,Z),

which implies that Mn is Einstein and so [5]

g(U,U) + 2k̄(p) = constant.

Therefore it is clear that g(U,U) = constant implies k̄(p) = constant, and vice
versa. This completes the proof of Theorem 2.4. □

In [13], Yano showed that a Riemannian manifold with semi-symmetric met-
ric connection whose curvature tensor vanishes is conformally flat. In case of
SSRM connection, we shall prove the following:

Theorem 2.5. Let Mn = (Mn, g) be a Riemannian manifold with SSRM
connection ∇̄. If the curvature tensor R̄ with respect to ∇̄ vanishes, then Mn

is a space of constant curvature, and in addition the length of the associated
vector field U is constant.
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Proof. Taking account of (6) and R̄ = 0 together, we get

R(X,Y, Z,W ) = 2du(X,Y )g(Z,W )

+
1

2
g(U,U)(g(X,W )g(Y, Z)− g(X,Z)g(Y,W )).

Since the curvature tensor R possesses the skew symmetric property with re-
spect to Z,W , we obtain du = 0, which makes the last relation reduce to

R(X,Y, Z,W ) =
1

2
g(U,U)(g(X,W )g(Y, Z)− g(X,Z)g(Y,W )).

Therefore it follows from the last relation and the classical Schur’s theorem that
Mn is a space of constant curvature, and hence we have g(U,U) = constant.
The proof of Theorem 2.5 is completed. □

3. Weakly symmetric manifold and SSRM connection

A non-flat Riemannian manifold Mn = (Mn, g) is called a weakly symmetric
manifold [11] if its curvature tensor R satisfies

(∇XR)(Y,Z, V,W ) = A(X)R(Y,Z, V,W ) +B(Y )R(X,Z, V,W )

+ C(Z)R(Y,X, V,W ) +D(V )R(Y,Z,X,W )

+ E(W )R(Y,Z, V,X),(9)

where the 1-forms A,B,C,D,E are not simultaneously zero. In [4], De and
Bandyopadhyay prove that the 1-form B,C,D and E in (9) are related by
B = C, D = E. Thus the equation (9) reduces to

(∇XR)(Y,Z, V,W ) = A(X)R(Y,Z, V,W ) +B(Y )R(X,Z, V,W )

+B(Z)R(Y,X, V,W ) +D(V )R(Y,Z,X,W )

+D(W )R(Y,Z, V,X).(10)

Now we investigate a weakly symmetric manifold equipped with SSRM con-
nection whose Ricci tensor vanishes. In this case, we have:

Lemma 3.1. Let Mn = (Mn, g) (n > 2) be a weakly symmetric manifold with
SSRM connection ∇̄ whose Ricci tensor r̄ vanishes. Then the scalar curvature
s of Mn is zero.

Proof. Let ξ1, ξ2, ξ3 be the associated vector fields corresponding to the 1-forms
A, B, D, respectively, that is,

g(X, ξ1) = A(X), g(X, ξ2) = B(X), g(X, ξ3) = D(X).

Contracting (10) over Y and W yields

(∇Xr)(Z, V ) = A(X)r(Z, V ) +R(X,Z, V, ξ2) +B(Z)r(X,V )

+D(V )r(Z,X) +R(ξ3, Z, V,X).(11)

Further contracting (11) over Z and V , we get

(12) ∇Xs = A(X)s+ 2r(X, ξ2) + 2r(ξ3, X).
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On the other hand, contracting (10) over Y , W and then over X, Z, we obtain
from the second Bianchi identity

(13)
1

2
∇V s = D(V )s+ r(ξ1, V ) + r(ξ2, V )− r(ξ3, V ).

In a similar manner, contracting (10) with respect to Y , W and then with
respect to X, V , we have from the second Bianchi identity

(14)
1

2
∇Zs = B(Z)s+ r(Z, ξ1)− r(Z, ξ2) + r(Z, ξ3).

It follows from (12), (13) and (14) that the following relations are valid:

(15) (A(X)− 2D(X))s = 2(r(ξ1, X)− 2r(ξ3, X)),

(16) (A(X)− 2B(X))s = 2(r(ξ1, X)− 2r(ξ2, X)).

Suppose that a weakly symmetric manifold Mn = (Mn, g) allows a SSRM
connection ∇̄ whose Ricci tensor r̄ vanishes. Then taking account of (7), we
get

r(Y,Z) =
1

2
(n− 1)g(U,U)g(Y,Z)− 2du(Y,Z),

which implies

r(Y,Z) =
1

2
(n− 1)g(U,U)g(Y, Z)

because the Ricci tensor r of Mn is symmetric. Therefore Mn is Einstein and
so its scalar curvature s is constant [5]. If we assume that the scalar curvature
s of Mn is non-zero, then it follows from (15), (16) and r = s

ng (n > 2) that
we have A = 2B = 2D. And so (10) reduces to the following form

(∇XR)(Y,Z, V,W ) = 2D(X)R(Y, Z, V,W ) +D(Y )R(X,Z, V,W )

+D(Z)R(Y,X, V,W ) +D(V )R(Y,Z,X,W )

+D(W )R(Y,Z, V,X).(17)

Since Mn is Einstein, contracting (17) over Y,W yields

0 = (∇Xr)(Z, V ) = 2D(X)r(Z, V ) +R(X,Z, V, ξ3) +D(Z)r(X,V )

+D(V )r(Z,X) +R(ξ3, Z, V,X).(18)

Permutting cyclically (18) twice over X, Z, V and adding these permutted
equations with (18), we get from the first Bianchi identity

(19) D(X)r(Z, V ) +D(Z)r(V,X) +D(V )r(X,Z) = 0.

Further contracting (19) over Z, V yields

(20) D(X)s+ 2r(ξ3, X) = 0.

Taking account of r = s
ng, (20) and s ̸= 0, we get

D = 0,
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which is a contradiction by the definition of weakly symmetric manifold. There-
fore we conclude that a weakly symmetric manifold Mn (n > 2) equipped with
SSRM connection ∇̄ whose Ricci tensor r̄ vanishes has s = 0. This completes
the proof of Lemma 3.1. □

As an immediate consequence, Lemma 3.1 leads to the following:

Theorem 3.2. Let Mn = (Mn, g) be a weakly symmetric manifold Mn (n > 2)
with SSRM connection ∇̄ whose Ricci tensor r̄ vanishes. Then the connections
∇̄ and ∇ coincide.

Proof. Since the vanishing of r̄ yields s̄ = 0, it follows from (8) and Lemma
3.1 that U = 0, equivalently u = 0. And hence we have ∇̄ = ∇. The proof of
Theorem 3.2 is completed □

According to Theorem 3.2, we immediately obtain the following:

Corollary 3.3. There does not exist a weakly symmetric manifold Mn (n > 2)
equipped with SSRM connection ∇̄ whose Ricci tensor r̄ vanishes unless its Ricci
tensor r is zero.

4. Some semisymmetry conditions

For a (0, k)-tensor field A on Mn, we define the tensor R ·A by

(R(X,Y ) ·A)(X1, . . ., Xk)

= −A(R(X,Y )X1, X2, . . ., Xk)− · · ·−A(X1, . . ., Xk−1, R(X,Y )Xk).(21)

Moreover, if B is a symmetric (0, 2)-tensor field, then we define the (0, k + 2)-
tensor Q(B,A) by

Q(B,A)(X1, . . ., Xk;X,Y )

= −A((X ∧B Y )X1, . . ., Xk)− · · · −A(X1, . . ., Xk−1, (X ∧B Y )Xk),(22)

where X ∧B Y is defined by

(X ∧B Y )Xi = B(Y,Xi)X −B(X,Xi)Y.

If a Riemannian manifold Mn satisfies the condition R ·R = 0 (resp. R ·r = 0),
then Mn is said to be semisymmetry (resp. Ricci-semisymmetry) [9, 10]. It is
easy to see that every locally symmetric manifold is semisymmetry and that
every semisymmetry manifold is Ricci-semisymmetry. A vector field V on Mn

is said to be concurrent if it satisfies

∇XV = fX,

where f is a function on Mn. Note that if a vector field V on Mn is concurrent,
then its associated 1-form v given by g(V,X) = v(X) is closed. From now on
we deal with a Riemannian manifold Mn = (Mn, g) with SSRM connection ∇̄
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whose associated vector field U is concurrent. Therefore it follows from (6) and
(7) that on such a manifold

R̄(X,Y, Z,W ) = R(X,Y, Z,W )

− 1

2
g(U,U)(g(X,W )g(Y, Z)− g(X,Z)g(Y,W )),(23)

and

(24) r̄(Y, Z) = r(Y,Z)− 1

2
(n− 1)g(U,U)g(Y, Z).

In this section, we investigate such a manifold satisfying some semisymmetry
conditions. First of all, we prove the following statement:

Lemma 4.1. Let Mn = (Mn, g) be a Riemannian manifold with SSRM con-
nection ∇̄ whose associated vector field U is concurrent. Then we have

(25) R · R̄ = R ·R
and

(26) R̄ ·R = R ·R− 1

2
g(U,U)Q(g,R).

Proof. Taking account of (21) and (23), we easily obtain

R · R̄ = R ·R.

Similarly from (21), (22) and (23), we have

R̄ ·R = R ·R− 1

2
g(U,U)Q(g,R).

This completes the proof of Lemma 4.1. □

Consequently, this leads to the following results:

Theorem 4.2. Let Mn = (Mn, g) be a Riemannian manifold with SSRM
connection ∇̄ whose associated vector field U is concurrent. Then R · R̄ = 0 if
and only if Mn is semisymmetry.

Proof. It is obvious from (25) that the statement holds true. □

Theorem 4.3. Let Mn = (Mn, g) be a semisymmetry Riemannian manifold
with SSRM connection ∇̄ whose associated vector field U is concurrent. If the
vector field U is nowhere vanishing, and in addition R̄ · R = 0, then Mn is
Einstein.

Proof. Since Mn is semisymmetry and satisfies the condition R̄ ·R = 0, we get
from (26) and U ̸= 0

Q(g,R)(X1, X2, X3, X4;X,Y ) = 0.

Contracting the above identity with respect to X2 and X3, we have

Q(g, r)(X1, X4;X,Y ) = 0,
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which implies from (22) that Mn is Einstein. Thus the proof of Theorem 4.3
is completed. □

Theorem 4.4. Let Mn = (Mn, g) be a Riemannian manifold with SSRM
connection ∇̄ whose associated vector field U is concurrent. If the vector field
U is nowhere vanishing, and in addition R ·R̄−R̄ ·R = 0, then Mn is Einstein.

Proof. Taking account of (25) and (26), we have from the given conditions
R · R̄− R̄ ·R = 0 and U ̸= 0

Q(g,R) = 0,

which yields by using the same manner as in the proof of Theorem 4.3 that
Mn is Einstein. This completes the proof of Theorem 4.4. □

On the other hand, concerning certain Ricci-semisymmetry conditions, we
have the following result:

Lemma 4.5. Let Mn = (Mn, g) be a Riemannian manifold with SSRM con-
nection ∇̄ whose associated vector field U is concurrent. Then we have

(27) R · r̄ = R · r

and

(28) R̄ · r = R · r − 1

2
g(U,U)Q(g, r).

Proof. Taking account of (21) and (24), we easily obtain

R · r̄ = R · r.

Similarly from (21), (22) and (23), we have

R̄ · r = R · r − 1

2
g(U,U)Q(g, r).

Hence we get the result as required. □

Consequently, this leads to the following results:

Theorem 4.6. Let Mn = (Mn, g) be a Riemannian manifold with SSRM
connection ∇̄ whose associated vector field U is concurrent. Then R · r̄ = 0 if
and only if Mn is Ricci-semisymmetry.

Proof. It is obvious from (27) that the statement is valid. □

Theorem 4.7. Let Mn = (Mn, g) be a Ricci-semisymmetry Riemannian man-
ifold with SSRM connection ∇̄ whose associated vector field U is concurrent.
If the vector field U is nowhere vanishing, and in addition R̄ · r = 0, then Mn

is Einstein.
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Proof. Since Mn is Ricci-semisymmetry and satisfies the condition R̄ · r = 0,
we have from (28) and U ̸= 0

Q(g, r) = 0,

which implies from (22) that Mn is Einstein. Thus the proof of Theorem 4.7
is completed. □

Theorem 4.8. Let Mn = (Mn, g) be a Riemannian manifold with SSRM
connection ∇̄ whose associated vector field U is concurrent. If the vector field
U is nowhere vanishing, and in addition R · r̄− R̄ · r = 0, then Mn is Einstein.

Proof. Taking account of (27) and (28), we have from the given conditions
R · r̄ − R̄ · r = 0 and U ̸= 0

Q(g, r) = 0

and hence it follows from (22) that Mn is Einstein. This completes the proof
of Theorem 4.8. □

Theorem 4.9. Let Mn = (Mn, g) be a Ricci-semisymmetry Riemannian man-
ifold with SSRM connection ∇̄ whose associated vector field U is concurrent.
If the vector field U is nowhere vanishing, and in addition R̄ · r̄ = 0, then Mn

is Einstein.

Proof. From (21), (22), (23) and (24), we have

R̄ · r̄ = R · r − 1

2
g(U,U)Q(g, r).

If we assume R̄ · r̄ = 0 and R · r = 0, then it follows from the above identity
and U ̸= 0 that

Q(g, r) = 0,

which yields from (22) that Mn is Einstein. Thus the proof of Theorem 4.9 is
completed. □
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