• 제목/요약/키워드: Ricci symmetric

검색결과 71건 처리시간 0.02초

ON QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.9-15
    • /
    • 2019
  • In this paper, we study a type of Riemannian manifold, namely quasi Ricci symmetric manifold. Among others, we show that the scalar curvature of a quasi Ricci symmetric manifold is constant. In addition if the manifold is Einstein, then its Ricci tensor is zero. Also we prove that if the associated vector field of a quasi Ricci symmetric manifold is either recurrent or concurrent, then its Ricci tensor is zero.

On Conformally at Almost Pseudo Ricci Symmetric Mani-folds

  • De, Uday Chand;Gazi, Abul Kalam
    • Kyungpook Mathematical Journal
    • /
    • 제49권3호
    • /
    • pp.507-520
    • /
    • 2009
  • The object of the present paper is to study conformally at almost pseudo Ricci symmetric manifolds. The existence of a conformally at almost pseudo Ricci symmetric manifold with non-zero and non-constant scalar curvature is shown by a non-trivial example. We also show the existence of an n-dimensional non-conformally at almost pseudo Ricci symmetric manifold with vanishing scalar curvature.

𝜂-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS

  • Mondal, Ashis
    • Korean Journal of Mathematics
    • /
    • 제29권4호
    • /
    • pp.705-714
    • /
    • 2021
  • In the present paper, we study 𝜂-Ricci solitons on para-Kenmotsu manifolds with Codazzi type of the Ricci tensor. We study 𝜂-Ricci solitons on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study 𝜂-Ricci solitons on 𝜑-conformally semi-symmetric, 𝜑-Ricci symmetric and conformally Ricci semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a three-dimensional para-Kenmotsu manifold which admits 𝜂-Ricci solitons.

η-RICCI SOLITONS ON TRANS-SASAKIAN MANIFOLDS WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Bahadir, Oguzhan;Siddiqi, Mohd Danish;Akyol, Mehmet Akif
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.601-620
    • /
    • 2020
  • In this paper, firstly we discuss some basic axioms of trans Sasakian manifolds. Later, the trans-Sasakian manifold with quarter symmetric non-metric connection are studied and its curvature tensor and Ricci tensor are calculated. Also, we study the η-Ricci solitons on a Trans-Sasakian Manifolds with quartersymmetric non-metric connection. Indeed, we investigated that the Ricci and η-Ricci solitons with quarter-symmetric non-metric connection satisfying the conditions ${\tilde{R}}.{\tilde{S}}$ = 0. In a particular case, when the potential vector field ξ of the η-Ricci soliton is of gradient type ξ = grad(ψ), we derive, from the η-Ricci soliton equation, a Laplacian equation satisfied by ψ. Finally, we furnish an example for trans-Sasakian manifolds with quarter-symmetric non-metric connection admitting the η-Ricci solitons.

Some Symmetric Properties on (LCS)n-manifolds

  • Venkatesha, Venkatesha;Naveen Kumar, Rahuthanahalli Thimmegowda
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.149-156
    • /
    • 2015
  • We analyze the $(LCS)_n$-manifolds endowed with some symmetric properties, focusing on Ricci tensor and the 1-form ${\gamma}$. We study some properties of special Weakly Ricci-Symmetric $(LCS)_n$-manifolds and also shown that Weakly ${\phi}$-Ricci Symmetric $(LCS)_n$-manifold is an ${\eta}$-Einstein manifold.

ON ALMOST QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.603-611
    • /
    • 2020
  • The purpose of this note is to introduce a type of Riemannian manifold called an almost quasi Ricci symmetric manifold and investigate the several properties of such a manifold on which some geometric conditions are imposed. And the existence of such a manifold is ensured by a proper example.

Note on Almost Generalized Pseudo-Ricci Symmetric Manifolds

  • Baishya, Kanak Kanti
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.517-523
    • /
    • 2017
  • The purpose of the present paper is to study an almost generalized pseudo-Ricci symmetric manifold. The existence of such manifold is ensured by an example. Furthermore, having found, faulty example in [13], the present paper also attempts to construct a non-trivial example of an almost pseudo Ricci symmetric manifold.

Some Geometric Properties of η-Ricci Solitons on α-Lorentzian Sasakian Manifolds

  • Shashikant, Pandey;Abhishek, Singh;Rajendra, Prasad
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.737-749
    • /
    • 2022
  • We investigate the geometric properties of 𝜂*-Ricci solitons on α-Lorentzian Sasakian (α-LS) manifolds, and show that a Ricci semisymmetric 𝜂*-Ricci soliton on an α-LS manifold is an 𝜂*-Einstein manifold. Further, we study 𝜑*-symmetric 𝜂*-Ricci solitons on such manifolds. We prove that 𝜑*-Ricci symmetric 𝜂*-Ricci solitons on an α-LS manifold are also 𝜂*-Einstein manifolds and provide an example of a 3-dimensional α-LS manifold for the existence of such solitons.

ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Chaubey, Sudhakar Kumar;Shaikh, Absos Ali
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.303-319
    • /
    • 2019
  • The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally ${\phi}$-symmetric, ${\eta}$-parallel Ricci tensor and a non-null concircular vector field on $(LCS)_3$-manifolds.