KYUNGPOOK Math. J. 57(2017), 517-523
https://doi.org/10.5666 /KMJ.2017.57.3.517
pISSN 1225-6951  eISSN 0454-8124
© Kyungpook Mathematical Journal

Note on Almost Generalized Pseudo-Ricci Symmetric Mani-
folds

KANAK KANTI BAISHYA

Department of Mathematics, Kurseong College, Dowhill Road, Kurseong, Darjeeling-
734 203, West Bengal, India

e-mail : kanakkanti.kc@gmail.com

ABSTRACT. The purpose of the present paper is to study an almost generalized pseudo-
Ricci symmetric manifold. The existence of such manifold is ensured by an example.
Furthermore, having found, faulty example in [13], the present paper also attempts to
construct a non-trivial example of an almost pseudo Ricci symmetric manifold.

1. Introduction

In the spirit of Chaki and Kawaguchi [9], a non-flat n-dimensional Rieman-
nian manifold (M™,g)(n > 3) is defined to be an almost pseudo-Ricci symmetric
manifold, if its Ricci tensor S of type (0,2) is not identically zero and satisfies the
equation

(1.1)  (VxS)(V,U) = [A(X) + B(X)]S(Y,U) + A(Y)S(X,U) + A(U)S(X,Y)

where A and B are two non-zero 1-forms defined by A(X) = ¢(X,0) and B(X) =
g(X,0) V X, V being the operator of the covariant differentiation. The local ex-
pression of the above equation is

(1.2) Riky= (Ai + Bi)Rir + ARy + A Ru,

where A; and B, are two non-zero co-vectors and comma followed by indices denotes
the covariant differentiation with respect to the metric tensor g. An n-dimensional
manifold of this kind is abbreviated by A(PRS),,.

Keeping in tune with Dubey[11], the author in [6] has introduced the notion
of an almost generalized pseudo-Ricci symmetric manifold which is abbreviated by
A(GPRS),-manifold and defined as follows
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A non-flat n-dimensional Riemannian manifold (M™, g)(n > 3), is termed as an
almost generalized pseudo-Ricci symmetric manifold, if its Ricci tensor S of type
(0,2) is not identically zero and admits the identity

(VxS)(Y,U) = [AX)+ B(X)S(Y,U)+ A(Y)S(X,U) + AU)S(X,Y)
(1.3) +[C(X) + D(X)]g(Y,U) + C(Y)g(X,U) + C(U)g(X,Y)

where A, B, C and D are non-zero 1-forms defined by A(X) = ¢(X,0), B(X) =
9(X,0),C(X) =g(X,n) and D(X) = g(X, ) V X. The beauty of such A(GPRS) -
space is that it has the flavour of

(1) Ricci symmetric space in the sense of Cartan (for A= B =C =D =0),
(2) Ricci recurrent space by E. M. Patterson [4] (for B # 0and A =C = D = 0),

(3) generalized Ricci recurrent space by De, Guha and Kamilya [14] (for B # 0,
D#0and A=C=0),

(4) pseudo-Ricci symmetric space by Chaki [8] (for A= B # 0 and C = D =0),

(5) generalized pseudo-Ricci symmetric space, by Baishya [5] (for A = B # 0
and C = D # 0) and

(6) almost pseudo-Ricei symmetric manifold by Chaki and Kawaguchi [9] (for
A=B#0and C=D =0).

We structured the present paper as follows: Section 2 is dealt with some basic
properties of an almost generalized pseudo-Ricci symmetric manifold. In section
3, we have constructed a non-trivial example of an almost pseudo-Ricci symmetric
manifold which is not an almost generalized pseudo-Ricci symmetric manifold. Fi-
nally, it is investigated that there exists a Riemannian manifold (R%, g) which is an
almost generalized pseudo-Ricci symmetric for some choice of the 1-forms.

2. A(GPRS),-manifold

In this section, we assume a non-flat n-dimensional Riemannian manifold
(M™, g)(n > 3) to be an almost generalized pseudo-Ricci symmetric manifold. Next,
we consider that the 1-forms A and B are co-directional with that of C' & D re-
spectively, that is C(X) = ¢A(X) & D() = ¢B(X) V X, where ¢ being a non-zero
constant function, then the relation (1.3) turnes into

(VxZ)(Y,U) = [A(X) + B(X)|Z(Y,U)] + A(Y) Z(X,U) + A(U)Z(X,U)

where Z(X,Y) = S(X,Y)+ ¢ g(X,Y) is well known Z-tensor introduced in [2, 3].
This leads to the following

Theorem 2.1. Every A(GPRS),-manifold is an almost pseudo Z-symmetric man-
ifold provided that the 1-forms A € B are co-directional with that of C' € D respec-
tively.
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Definition 2.1. A non-flat Riemannian manifold (M™, g)(n > 3) is said to be a
quasi-Einstein manifold [10] if its Ricci tensor S of type (0, 2) is not identically zero
and satisfies the condition

S(X,Y) = Ag(X,Y) + pp(X)(Y),

where A, 4 € R and 9 is a non-zero 1-form such that g(X,U) = ¢(X), for all vector
fields X.

Now, contracting Y over U in (1.1) we obtain
(2.1) dr(X) = r[A(X) + B(X)] + 24(X) + (n + 2)C(X) + nD(X)
where A(X) = S(X,,0). Again, from (1.1), one can easily bring out

(VxS)(V,U) = (VuS)(X,Y) = B(X)S(Y,U) - B(U)S(X,Y)
(2.2) +D(X)g(Y,U) — D(U)g(X,Y)

after further contraction which leaves
(2.3) dr(X) =2rB(X) —2B(X) +2(n — 1)D(X),

where B(X) = S(X, o).
It is known ([7], p, 41) that a conformally flat (M™, g) possesses the relation

(24) (VxS)(YV,U) = (VuS)(X,Y) = [g(Y, U)dr(X) — g(X,Y)dr(U)].

2(n—1)
By virtue of (2.2), (2.3) and (2.4) we find

(n = DBX)S(Y,U) - BU)S(X,Y)]
(2.5) = [rB(X) - B(X)lg(Y.U) - [rB(U) — B(U)]g(X.Y).

which yields
(2.6) B(X)B(U) = B(U)B(X)

for Y = p. Assuming the Ricci tensor of the manifold as codazzi type (in the sense
of [12]) and then making use of (2.3), we obtain from (2.6) that

(2.7) B(X)D(U) = B(U)D(X) V X and U.

This motivate us to state

Proposition 2.1. In a conformally flat A(GPRS)4-manifold with codazzi type of
Ricci tensor, the 1-forms B and D are co-directional.
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Again, for constant scalar curvature tensor (or codazzi type of Ricci tensor) by
virtue of (2.3), (2.5), (2.7), we can easily find out

D(e) 1
2.8 SY,U)=— Y.U)+ rB(Y)+nD(Y)|B(U),
2. (.0) = = &g(Y,0) + 5 BY) + 1D BO)
where gggg =k, V U. If the 1-forms B and D are co-directional, then (2.8) takes

the following form
(2.9) S(Y,U) == ag(Y,U) + BB(Y)B(U).

This leads to the followings

Corollary 2.1. A conformally flat A(GPRS),,-manifold with codazzi type of Ricci
tensor, is a quasi-Einstein manifold.

Corollary 2.2. A conformally flat almost generalized pseudo-Ricci symmetric man-
ifold with constant scalar curvature is a space of quasi constant curvature [1].

3. Existence of A(PRS),-manifold

In the example given in ([13], Example 5, p. 515-516) authors have found the
value of the covariant derivatives corresponding to the vanishing component of the
Ricci tensor R14, R24 & R34 (namely, R14,1 y R24,2 & R34,3) to be zero. But those

value are calculated to be Ri4,1 = Ros,o= R34,3= W which are non-zero.

Consequently for their [13] choice of the 1-forms
3 . 1 .
Ai(x) =4 ~70 for i = 4, Bi(x)={ g1 fori=1,
0, otherwise, 0, otherwise,
the relations

Ris= (A1 + B1)Ria + A1 Ris + Ay Ri1,
Ros,0= (A2 + B2)Ros + AsRoy + AyRoo,
R34,3= (A3 + B3)Rsq + AsR3s + AsR33,

do not stand. Hence, (R%, g) under-considered metric ([13], page 516) can not be
an almost pseudo-Ricci symmetric manifold.

Example 3.1. Let (R%, g) be a 4-dimensional Riemannian space endowed with the
Riemannian metric g given by

(3.1) ds? = g;jda'dx? = e [(dz")? + (dz?)? + 2 d2’dzx?],

where 7,5 = 1,2,3,4.
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The non-zero components of Riemannian curvature tensor, Ricci tensors and

scalar curvature (up to symmetry and skew-symmer) are

1 —x
Razo4 = —2¢ = —R3434,
1
Ry = 5= Ray,
3
r = _56

Covariant derivatives of Ricci tensors is expressed as

For the following choice of thel-forms

1
Ai=4q 2
0,

one can easily verify the

Ry
Rz,
Rigp
Roas,
Roy
R34,
Ri1k
Rao i
R33,p,
Ry,

where k = 1,2,3,4. In consequence of the above, one can say that

Theorem 3.1. There exists a manifold (R*, g) which is an almost pseudo-Ricci
symmetric manifold with the above mentioned choice of the 1-forms.

It is obvious that the manifold bearing the metric given by (3.1) can not be
Ricci symmetric, Ricci recurrent, generalized Ricci recurrent as well as almost gen-

1
Ri2,20= Ri3,4a = Ria,3= e
1

Ra2,1 = R3s4,1 = —5
fori=1 L fori=1
ori=1, B,={ 3 fori=1
otherwise, 0, otherwise,

followings

Ak + By) Ria + A1 Ry + ARy,
Ak + By) Ri3 + A1 Rys + Az Ry,
Ay + Bi) Rig + A1 Rys + Ay Ry,
Ay + By) Ros + AsRys + AsRoy,
Ak + By) Rog + Az Rpy + AgRop,
Ay + By) R3q + A3 Ry + Ay Ry,
A + Bi) Ri1 + A1 Ri1 + A1 R,
Ag + By) Raz + Az Rio + Az Rog,
Ak + By) R33 + AzRy3 + Az Rsy,

(
(
(
(
(
(
(
(
(
(Ar + Bi) Rys + Ay Rpa + Ay Ryy,

eralized pseudo-Ricci symmetric manifold.
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4. Existence of A(GPRS),-manifold

Example 4.1. Let (R*, g) be a 4-dimensional Riemannian space endowed with the
Riemann metric g given by

(4.1) ds? = gijdatda? = (2)3[(dx")? 4 (dz?)? + (d2®)? | + (dz*)?,
where 7, j = 1,2,3,4. The non-zero components of Ricci tensors are

2 2

Ri1 =Ros =R33 =575, Ru= .
11 22 33 3(z1)2/3’ 44 3(1)?

Covariant derivative I;;; of Ricci tensors is expressed by

4 4
Ri1iy= —~ = Rosu=R Rugon = —
11,4 3(.1:4)5/3 2254 3344 4454 3(x4>3
8
Ri4,1 = Ragyo= R3q,3= eoEh
For following choice of the 1-forms
1 . 19 .
A, = i for i =4, B, ={ 34 for i =4,
0, otherwise, 0, otherwise,
14 . 34 .
Ci: 9(334)37 fOI"L:47 D,L-: _W’ fOI'Z:4,
0, otherwise, 0, otherwise,

One can verify the followings

Ryg (Ag + By) Rz + A1 Ry + A2 Rip + (Cp + D) g12 + Cigra + Cogir,
Riz,y = (Ap+ Bi) Riz + AiRis + AsRyy + (Cx + Dy) g13 + C1grs + Cagux,
Rise = (Ap+ Br) Ris+ A1 Rps + Ay Ry + (Cx + Di) g14 + Crgra + Cugir,
Raz, = (Ag + Bi) Raz + Az Ri3 + AzRop + (Cy + Dy) g23 + Cagrs + Cagar,
Rosy = (A + Bi) Rog + Az Ryy + AgRop + (Cy + Dy) g2a + Cogra + Cugor,
R3se = (Ap+ Bi) R3s + AzRis + AgRs + (Cy + Dy) g3a + Cagra + Cagar,
Rit,e = (Ag+ Bi) Riy + A1Rpy + A1 Rig + (Cr + Di) 911 + Cigrr + Crgur,
Roz,e = (A + Bi) Roa + A2 Ry + AsRop, + (Cy + Dy) g22 + Cagra + Cagox,
Raz,r = (Ag + By) Rz + AsRys + AzRap + (Cr + Di) g33 + Cagrs + Csgag,
Ryyk (Ap + Bi) Rya + AyRis + AgRyy + (Cy + Dy) gaa + Cagra + Cagar,

where k = 1,2, 3,4. In consequence of the above, one can say that

Theorem 4.1. There ezists a manifold (R, g) which is an almost generalized
pseudo-Ricci symmetric for the above mentioned choice of thel-forms.
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It is obvious that the manifold bearing the metric given by (4.1) can not be Ricci

symmetric, Ricci recurrent, generalized Ricci recurrent as well as pseudo-Ricci sym-
metric.
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