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Abstract. We investigate the geometric properties of η∗-Ricci solitons on α-Lorentzian

Sasakian (α-LS) manifolds, and show that a Ricci semisymmetric η∗-Ricci soliton on an

α-LS manifold is an η∗-Einstein manifold. Further, we study ϕ∗-symmetric η∗-Ricci soli-

tons on such manifolds. We prove that ϕ∗-Ricci symmetric η∗-Ricci solitons on an α-LS

manifold are also η∗-Einstein manifolds and provide an example of a 3-dimensional α-LS

manifold for the existence of such solitons.

1. Introduction

The Ricci flow, which is used to compute the canonical metric based on the
smooth manifold, was proposed by Hamilton [19] in 1982. The Ricci flow provides
an evolution expression of metrics for a Riemannian manifold as follows:

(1.1)
∂

∂t
g∗ij(t) = −2Rij.

The Einstein metric can be naturally generalized to Ricci solitons which are
defined on the Riemannian manifold (M, g∗) [6]. The triplet (g∗, V, ω1) is a Ricci
soliton where g∗, V are the Riemannian metric or the pseudo Riemannian metric,
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and vector field (potential vector field), respectively. The real scalar ω1 is expressed
in terms of a Ricci tensor S, and a Lie derivative operator £V , as

(1.2) £V g∗ + 2S + 2ω1g∗ = 0,

If ω1 > 0, the Ricci solitons is called expanding while it is called shrinking if ω1 < 0.
The case ω1 = 0 represents the steady Ricci soliton [20]. The Einstein equation can
be recovered from Ricci solitons for V = 0. The metric expressed by (2) is generally
known as quasi-Einstein [7], [8] and is used frequently in physical systems. The
fixed Ricci flow points for ∂

∂t
g∗ = −2S which are projected from metrics space onto

its diffeomorphic quotient, modulo scaling, are referred to as the compact Ricci
solitons. These solitons frequently arise in Ricci flow on compact manifolds for
larger limiting cases. Ricci solitons play an interesting role in string theory, the
initial aspects of which were discussed by Friedman [17]. The similarity solution
of Ricci flow in Riemannian geometry was introduced by [19] as it explores the
concept of a singularity. Several authors have studied the geometric properties of
Ricci solitons over different manifolds, for instance see [11], [12], [14] and [15],[23].

Cho and Kimura [9] proposed the concept of η∗-Ricci solitons as type of gener-
alized Ricci solitons. Calin and Crasmareanu [5], [6] extended this concept for Hopf
hypersurfaces in complex space. The tuple (g∗, V, ω1, ω2) with constants ω1 and ω2

denote the η∗-Ricci solitons with the condition

(1.3) £V g∗ + 2S + 2ω1g∗ + 2ω2η∗ ⊗ η∗ = 0,

In the current scenario, η-Ricci solitons are studied by various researchers have
considered such η-Ricci solitons, and have found interesting geometric properties
in many contexts: on Lorentzian para-Sasakian manifolds [2], [28], gradient η-Ricci
solitons [3], on ǫ-para Sasakian manifolds [21] and [4], quasi-Sasakian 3-manifolds
[22], 3-dimensional Kenmotsu manifolds [24], Sasakian 3-manifolds [25], para-
Sasakian manifolds [26] and para Kenmotsu manifolds [29] and studied Lorentzian
Sasakian manifold [27] etc.
The structure of the paper is as follows. The neccessary basic theory about α-LS
manifolds is given in Section 2. In Section 3, the geometric properties of η∗-Ricci
solitons on α-LS manifolds are investigated. In Section 4, we show that Ricci
semisymmetric η∗-Ricci solitons on α-LS manifolds reduce to an η∗-Einstein mani-
fold. In Section 5, we study ϕ∗-symmetric η∗-Ricci solitons on α-LS manifolds. In
Section 6, we show that a ϕ∗-Ricci symmetric η∗-Ricci soliton on such a manifold
is also an η∗-Einstein manifold. Finally, we provide an example of a 3-dimensional
α-LS manifold for the existence of such solitons.

2. Preliminaries

A (2n+1)-dimensional differentiable manifold M is said to be an α-LS manifold
if it admits a (1, 1)-tensor field ϕ∗, a vector field ζ and 1-form η∗ and Lorentzian
metric g∗ which satisfy the following conditions:
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(2.1) ϕ2
∗
= I + η∗ ⊗ ζ, η∗(ζ) = −1,

(2.2) ϕ∗ζ = 0, η∗ ◦ ϕ∗ = 0,

(2.3) g∗(ϕ∗E,ϕ∗F ) = g∗(E,F ) + η∗(E)η∗(F ),

(2.4) g∗(E, ζ) = η∗(E),

for any vector fields E,F on M .
Also, α-LS manifolds satisfy [16],

(2.5) ∇Eζ = αϕ∗E,

(2.6) (∇Eη∗)F = αg∗(ϕ∗E,F ),

(2.7) (∇Eϕ∗)F = αg∗(E,F )ζ − αη∗(F )E,

where ∇ has the usual meaning.
Moreover, on α-LS manifolds the following relations hold (see [1]):

(2.8) R(ζ, E)F = α2[g∗(E,F )ζ − η∗(F )E],

(2.9) R(E,F )ζ = α2[η∗(F )E − η∗(E)F ],

(2.10) R(ζ, E)ζ = α2[η∗(E)ζ + E],

(2.11) S(E, ζ) = 2nα2η∗(E),

(2.12) Qζ = 2nα2ζ,

(2.13) S(ζ, ζ) = −2nα2,

(2.14) S(ϕ∗E,ϕ∗F ) = S(E,F ) + 2nα2η∗(E)η∗(F ),

where R, S, Q are the Riemannian curvature, Ricci tensor and Ricci operator,
respectively while α is a constant. S and Q are related by S(E,F ) = g∗(QE,F ) for
all E,F ∈ χ(M).
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As per the definition of the Lie derivative, we have

(£ζg∗)(E,F ) = (∇ζg∗)(E,F ) + g∗(αϕ∗E,F ) + g∗(E,αϕ∗F )

= 2αg∗(ϕ∗E,F ),(2.15)

(£ζϕ∗)E = [ζ, ϕ∗E]− ϕ∗([ζ, E])

= ∇ζϕ∗E −∇ϕ∗Eζ − ϕ∗(∇ζE) + ϕ∗(∇Eζ)

= ∇ζϕ∗E − ϕ∗(∇ζE)

= (∇ζϕ∗)E

= 0.(2.16)

Definition 2.1. ([18]) A (2n + 1)-dimensional α-LS manifold with constants a, b
and vector fields E,F defined on M satisfying the condition

S(E,F ) = ag∗(E,F ) + bη∗(E)η∗(F ),

is called an η∗-Einstein manifold.

Definition 2.2. An α-LS manifold M with vector fields E,F defined on M satis-
fying the condition

(2.17) R(E,F ) · S = 0,

is called Ricci semisymmetric.

Definition 2.3. ([13]) An α-LS manifold M with vector fields E,F defined on M

satisfying the condition

(2.18) ϕ2
∗
((∇EQ)(F )) = 0,

is called ϕ∗-Ricci symmetric.
If E and F are orthogonal to ζ, then the manifold is said to be locally ϕ∗-Ricci

symmetric.

Definition 2.4. ([30]) An α-LS manifold M is called ϕ∗-symmetric if

(2.19) ϕ2
∗
((∇HR)(E,F )G) = 0,

for all vector fields E,F,G,H on M .

3. Ricci and η∗-Ricci Solitons on α-LS Manifolds

Let (M,ϕ∗, ζ, η∗, g∗) be an α-LS manifold. The (potential) vector field V spans,
and is orthogonal to, ζ, so we only consider the case V = ζ. Using equation (3), we
obtain

(3.1) (£ζg∗)(E,F ) + 2S(E,F ) + 2ω1g∗(E,F ) + 2ω2η∗(E)η∗(F ) = 0,
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Because of (2.15), the (3.1) becomes

2αg∗(ϕ∗E,F ) + 2S(E,F ) + 2ω1g∗(E,F ) + 2ω2η∗(E)η∗(F ) = 0,

for any E,F ∈ χ(M), or equivalently:

(3.2) S(E,F ) = −αg∗(ϕ∗E,F )− ω1g∗(E,F )− ω2η∗(E)η∗(F ),

for any E,F ∈ χ(M).
The data (g∗, ζ, ω1, ω2) which satisfy the equation (3.1) is said to be an η∗-Ricci

soliton on M (see [9]), in particular, if ω2 = 0, (g∗, ζ, ω1) is a Ricci soliton [20]. Ricci
solitons is said to be expanding, shrinking and steady according as ω1 is positive,
negative or zero [10].

From (3.2), we get

(3.3) S(ϕ∗E,ϕ∗F ) = −αg∗(ϕ∗E,F )− ω1g∗(ϕ∗E,ϕ∗F ).

Taking F = ζ in (3.2), we have

(3.4) S(E, ζ) = (ω2 − ω1)η∗(E).

From (2.11) and (3.4), we obtain

(3.5) ω2 − ω1 = 2nα2.

4. Ricci Semisymmetric η∗-Ricci Solitons on α-LS Manifolds

In this section, we investigate Ricci semisymmetric α-LS manifolds on η∗-Ricci
solitons . According to Definition 2.2, we get

R(E,F ) · S = 0,

which implies that

(4.1) S(R(E,F )G,K) + S(G,R(E,F )K) = 0.

Taking E = ζ in (4.1), we obtain

(4.2) S(R(ζ, F )G,K) + S(G,R(ζ, F )K) = 0.

Using (2.8) in (4.2), we infer

α2[g∗(F,G)S(ζ,K) + η∗(G)S(F,K)(4.3)

+ g∗(F,K)S(G, ζ) − η∗(K)S(G,F )] = 0.
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Since α 6= 0, we obtain

g∗(F,G)S(ζ,K) + η∗(G)S(F,K)(4.4)

+ g∗(F,K)S(G, ζ) − η∗(K)S(G,F ) = 0.

Using (3.2) and (3.4) in (4.4), we infer

(ω2 − ω1)[g∗(F,G)η∗(K) + g∗(F,K)η∗(G)](4.5)

+ α[g∗(ϕ∗F,K)η∗(G) + g∗(ϕ∗F,G)η∗(K)]

+ ω1[g∗(F,K)η∗(G) + g∗(F,G)η∗(K)]

+ 2ω2η∗(F )η∗(G)η∗(K)

= 0.

Putting K = ζ in (4.5) and using (2.2), we infer

(4.6) αg∗(ϕ∗F,G) + ω2[g∗(F,G) + η∗(F )η∗(G)] = 0,

which is equivalent to

(4.7) αg∗(ϕ∗F,G) + ω2g∗(ϕ∗F, ϕ∗G) = 0,

Putting G = ϕ∗G, we obtain

(4.8) αg∗(ϕ∗F, ϕ∗G) + ω2g∗(ϕ∗F,G) = 0.

Subtracting (4.7) and (4.8), we get

(4.9) (α − ω2)[g∗(ϕ∗F,G) − g∗(ϕ∗F, ϕ∗G)] = 0.

for any F,G on M and follows ω2 = α. From the relation (3.5), we have ω1 =
α− 2nα2.

Now from above, we are able to state our results.

Theorem 4.1. If (M,ϕ∗, ζ, η∗, g∗) is a Ricci semisymmetric α-LS manifold,

(g∗, ζ, ω1, ω2) is an η∗-Ricci soliton on M , then ω2 = α and ω1 = α− 2nα2.

In case ω2 = 0, we derive the following.

Corollary 4.2. If α-LS manifolds (M,ϕ∗, ζ, η∗, g∗) satisfy the condition R(ζ, F ) ·
S = 0, then there does not exist Ricci solitons with potential vector field ζ.

From (3.2), (3.5) and (4.7), we obtain

(4.10) S = (ω2 − ω1){g∗(E,F ) + η∗(E)η∗(F )} = 2nα2{g∗(E,F ) + η∗(E)η∗(F )}.

As a consequence, we can state following proposition.
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Proposition 4.3. Let (M,ϕ∗, ζ, η∗, g∗) be an α-LS manifold. If M is Ricci

semisymmetric and (g∗, ζ, ω1, ω2) is an η∗-Ricci soliton on M, then the manifold

is an η∗-Einstein manifold.

5. ϕ∗-Symmetric η∗-Ricci Solitons on α-LS Manifolds

Consider ϕ∗-symmetric η∗-Ricci solitons on α-LS manifolds. Then from defini-
tion 2.3, we have

(5.1) ϕ2
∗
((∇EQ)(F )) = 0.

Using (2.1) and (5.1), we get

(5.2) (∇EQ)(F ) + η∗((∇EQ)(F ))ζ = 0.

Taking inner product in (5.2) with G, we have

(5.3) g∗((∇EQ)(F ), G) + η∗((∇EQ)(F ))η∗(G) = 0,

which implies

(5.4) g∗(∇EQF −Q(∇EF ), G) + η∗((∇EQ)(F ))η∗(G) = 0.

After simplification, we obtain

(5.5) g∗(∇EQF,G)− S(∇EF,G) + η∗((∇EQ)(F ))η∗(G) = 0.

Putting F = ζ in (5.5), we have

(5.6) g∗(∇EQζ,G)− S(∇Eζ,G) + η∗((∇EQ)(ζ))η∗(G) = 0.

Using (2.5) and (3.3) in (5.6), we infer

(5.7) (ω2 − ω1)αg∗(ϕ∗E,G)− αS(ϕ∗E,G) + η∗((∇EQ)(ζ))η∗(G) = 0.

Taking G = ϕ∗G in (5.7), we get

(5.8) (ω2 − ω1)αg∗(ϕ∗E,ϕ∗G)− αS(ϕ∗E,ϕ∗G) = 0.

Since α 6= 0, we get

(5.9) (ω2 − ω1)g∗(ϕ∗E,ϕ∗G)− S(ϕ∗E,ϕ∗G) = 0.

Now, using (3.3) in (5.9), we infer

(5.10) ω2g∗(ϕ∗E,ϕ∗G) + αg∗(E,ϕ∗G) = 0.

Taking E = ϕ∗E in (5.10), we have

(5.11) ω2g∗(E,ϕ∗G) + αg∗(ϕ∗E,ϕ∗G) = 0.
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Subtracting (5.10) from (5.11), we obtain

(5.12) (ω2 − α)(g∗(ϕ∗E,ϕ∗G) − g∗(E,ϕ∗G)) = 0,

for any E,G and follows ω2 = α. From the relation (3.5), we obtain ω1 = α−2nα2.

Now, we are ready to state the following results.

Theorem 5.1. If (M,ϕ∗, ζ, η∗, g∗) is ϕ∗-symmetric on α-LS manifolds, (g∗, ζ, ω1, ω2)
is an η∗-Ricci soliton on M , then ω2 = α and ω1 = α− 2nα2.

In case ω2 = 0, we can state next result.

Corollary 5.2. If α-LS manifolds (M,ϕ∗, ζ, η∗, g∗) satisfy the condition ϕ2
∗
((∇EQ)(ζ)) =

0, then there does not exist Ricci solitons with potential vector field ζ.

From (3.2), (3.4) and (5.10) we have

(5.13) S = (ω2 − ω1){g∗(E,F ) + η∗(E)η∗(F )} = 2nα2{g∗(E,F ) + η∗(E)η∗(F )}.

This leads to the following proposition.

Proposition 5.3. Let (M,ϕ∗, ζ, η∗, g∗) be an α-LS manifold. If M is a ϕ∗-

symmetric and (g∗, ζ, ω1, ω2) is an η∗-Ricci soliton on M, then the manifold is an

η∗-Einstein manifold.

6. ϕ∗-Ricci Symmetric η∗-Ricci Solitons on α-LS Manifolds

This section is devoted to the study of ϕ∗-Ricci symmetric η∗-Ricci solitons on
α-LS manifolds.

Consider a ϕ∗-Ricci symmetric η∗-Ricci solitons on α-LS manifolds. Then from
definition 2.4, we have

(6.1) ϕ2
∗
((∇HR)(E,F )G) = 0.

Using (2.1), we infer

(6.2) (∇HR)(E,F )G− η∗((∇HR)(E,F )G)ζ = 0,

Taking inner product with U in (57), we obtain

(6.3) g∗((∇HR)(E,F )G,U)− η∗((∇HR)(E,F )G)g∗(ζ, U) = 0.

Let {σi}, i = 1, 2, ..., n, be an orthonormal basis of the tangent space at any
point of the manifold. Then by putting E = U = σi in (53) and taking summation
over i , 1 ≤ i ≤ n, we get

(6.4) (∇HS)(F,G) +

n
∑

i=1

η∗((∇HR)(σi, F )G)g∗(ζ, σi) = 0.
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Putting G = ζ in (6.4), we get

(6.5) (∇HS)(F, ζ) +

n
∑

i=1

η∗((∇HR)(σi, F )ζ)g∗(ζ, σi) = 0.

The second term of (6.5), takes the form

η∗((∇HR)(σi, F )ζ) = g∗(∇HR(σi, F )ζ, ζ) − g∗(R(∇Hσi, F )ζ, ζ)(6.6)

−g∗(R(σi,∇HF )ζ, ζ) − g∗(R(σi, F )∇Hζ, ζ),

and we obtain

(6.7) η∗((∇HR)(σi, F )ζ) = 0.

The equations (6.5) and (6.7) imply that

(∇HS)(F, ζ) = 0,

which gives
∇H(S(F, ζ)) − S(∇HF, ζ) − S(F,∇Hζ) = 0.

In view of (2.5) and (3.4), we have

(6.8) (ω2 − ω1)(∇Hη∗(F )− η∗(∇HF ))− αS(F, ϕ∗H) = 0.

Putting F = ϕ∗F in (6.8), we infer

(6.9) αS(ϕ∗F, ϕ∗H) = (ω1 − ω2)g∗((∇Hϕ∗)F, ζ).

Using (2.4), (2.7) and (3.3) in (6.9), we get

(6.10) αω2g∗(ϕ∗F, ϕ∗H) + α2g∗(F, ϕ∗H) = 0.

Since α 6= 0, we infer

(6.11) ω2g∗(ϕ∗F, ϕ∗H) + αg∗(F, ϕ∗H) = 0.

Putting F = ϕ∗F , we have

(6.12) ω2g∗(F, ϕ∗H) + αg∗(ϕ∗F, ϕ∗H) = 0.

Subtracting (6.11) from (6.12), we get

(6.13) (ω2 − α)(g∗(ϕ∗F, ϕ∗H)− g∗(F, ϕ∗H)) = 0,

for any F,H it follows ω2 = α. Using (3.5), we obtain ω1 = α− 2nα2.

Hence, we can state the following results.
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Theorem 6.1. If (M,ϕ∗, ζ, η∗, g∗) is a ϕ∗-Ricci symmetric on an α-LS manifold

and (g∗, ζ, ω1, ω2) is an η∗-Ricci soliton, then ω2 = α and ω1 = α− 2nα2.

In case ω2 = 0, we deduce

Corollary 6.2. If α-LS manifolds (M,ϕ∗, ζ, η∗, g∗) satisfy the condition ϕ2
∗
((∇HR)(E,F )ζ) =

0, then there does not exist Ricci solitons with potential vector field ζ.

Using (3.2), (3.5) and (6.11) we have

(6.14) S = (ω2 − ω1){g∗(E,F ) + η∗(E)η∗(F )} = 2nα2{g∗(E,F ) + η∗(E)η∗(F )}.

This leads to the following proposition.

Proposition 6.3. Let (M,ϕ∗, ζ, η∗, g∗) be an α-LS manifold. If M is a ϕ∗-Ricci

symmetric and (g∗, ζ, ω1, ω2) is an η∗-Ricci soliton on M , then the manifold is an

η∗-Einstein manifold.

Example 6.4. Now, we assume the 3-dimensional manifold

M = {(p, q, r) ∈ R3 : r 6= 0}

where p, q, r are the standard coordinates in R3.
The vector fields

σ1 = er
∂

∂q
, σ2 = er

(

∂

∂p
+

∂

∂q

)

, σ3 = α
∂

∂r
,

are linearly independent at each point of M and α is a constant.
Let g∗ be the Lorentzian metric defined as

g∗(σ1, σ3) = g∗(σ2, σ3) = g∗(σ1, σ2) = 0,

g∗(σ1, σ1) = g∗(σ2, σ2) = 1, g∗(σ3, σ3) = −1.

Let σ3 = ζ. Then Lorentzian metric on M is given below

g∗ =
1

(er)2
{2(dp)2 + (dq)2 − 2dpdq} −

1

(α)2
(dr)2.

Let η∗ be the 1-form defined as

η∗(G) = g∗(G, σ3),

for any vector field G on M .
Let ϕ∗ be the (1, 1)-tensor field defined as

ϕ∗(σ1) = −σ1, ϕ∗(σ2) = −σ2, ϕ∗(σ3) = 0.
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Then, using the linearity of ϕ∗ and g∗, we get

η∗(σ3) = −1, ϕ2
∗
G = G+ η∗(G)σ3,

g∗(ϕ∗G,ϕ∗H) = g∗(G,H) + η∗(G)η∗(H),

for any vector field G,H on M .
It is easy to observe

η∗(σ1) = 0, η∗(σ2) = 0, η∗(σ3) = −1.

Thus for σ3 = ζ, the structure (ϕ∗, ζ, η∗, g∗) defines a Lorentzian almost contact
metric structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g∗.
Then we have

[σ1, σ2] = 0, [σ1, σ3] = −ασ1, [σ2, σ3] = −ασ2.

Using Koszul’s formula

2g∗(∇EF,G) = Eg∗(F,G) + Fg∗(G,E)−Gg∗(E, F )

−g∗(E, [F,G])− g∗(F, [E,G])

+g∗(G, [E, F ]),

One can easily obtain

∇σ
1
σ1 = −ασ3, ∇σ

1
σ2 = 0, ∇σ1

σ3 = −ασ1,

∇σ2
σ1 = 0, ∇σ2

σ2 = −ασ3, ∇σ2
σ3 = −ασ2,

∇σ3
σ1 = 0, ∇σ3

σ2 = 0, ∇σ3
σ3 = 0.

Now, we see that the manifold is an α-LS manifold.
Also, the Riemannian curvature tensor R is given by

R(E,F )G = ∇E∇FG−∇F∇EG−∇[E,F ]G.

Then

R(σ1, σ2)σ2 = α2σ1, R(σ1, σ3)σ3 = −α2σ1, R(σ2, σ1)σ1 = α2σ2,

R(σ2, σ3)σ3 = −α2σ2, R(σ3, σ1)σ1 = α2σ3, R(σ3, σ2)σ2 = α2σ3.

Then, the Ricci tensor S is given by

S(σ1, σ1) = S(σ2, σ2) = 2α2, S(σ3, σ3) = −2α2.

From (3.2), we obtain S(σ1, σ1) = S(σ2, σ2) = α − ω1 and S(σ3, σ3) = ω1 − ω2,
therefore ω1 = α − 2α2 and ω2 = α. The data (g∗, ζ, ω1, ω2) for ω1 = α − 2α2 and
ω2 = α provides an η∗-Ricci soliton on an α-LS manifold.
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