DOI QR코드

DOI QR Code

Note on Almost Generalized Pseudo-Ricci Symmetric Manifolds

  • Received : 2016.10.18
  • Accepted : 2017.04.10
  • Published : 2017.10.23

Abstract

The purpose of the present paper is to study an almost generalized pseudo-Ricci symmetric manifold. The existence of such manifold is ensured by an example. Furthermore, having found, faulty example in [13], the present paper also attempts to construct a non-trivial example of an almost pseudo Ricci symmetric manifold.

Keywords

References

  1. B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N.S.), 26(1972), 318-322.
  2. C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar., 135(2012), 80-96. https://doi.org/10.1007/s10474-011-0166-3
  3. C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys., 9(2012), 1250004(21 pages). https://doi.org/10.1142/S0219887812500041
  4. E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London. Math. Soc. 27(1952), 287-295.
  5. K. K. Baishya, On generalized pseudo-Ricci symmetric manifold, submitted.
  6. K. K. Baishya, A note on almost generalized pseudo-Ricci symmetric spacetime, submitted.
  7. K. Yano and M. Kon, Structures on manifolds, Ser. Pure Math. 3, World Scientific Publishing Co., Singapore, 1984.
  8. M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys., 15(1988), 526-531.
  9. M. C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds. Tensor (N.S.), 68(1)(2007), 10-14.
  10. R. Deszcz, M. Glogowska, M. Hotlos and Z. Senturk, On certain quasi-Einstein semisymmetric hypersurfaces, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 41(1998), 151-164.
  11. R. S. D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math., 10(1979), 1508-1513.
  12. S. Mukhopadhyay and B. Barua, On a type of non-at Riemannian Manifold, Tensor (N.S.), 56(1995), 227-231.
  13. U. C. De and A. K. Gazi, On Conformally flat almost pseudo-Ricci symmetric manifolds, Kyungpook Math. J. 49(2009), 507-520. https://doi.org/10.5666/KMJ.2009.49.3.507
  14. U. C. De, N. Guha and D. Kamilya, On generalized Ricci recurrent manifolds, Tensor(N. S.), 56(1995), 312-317.