• Title/Summary/Keyword: Retrial Queueing

Search Result 16, Processing Time 0.029 seconds

A RETRIAL QUEUEING MODEL WITH THRESHOLDS AND PHASE TYPE RETRIAL TIMES

  • CHAKRAVARTHY, SRINIVAS R.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.351-373
    • /
    • 2020
  • There is an extensive literature on retrial queueing models. While a majority of the literature on retrial queueing models focuses on the retrial times to be exponentially distributed (so as to keep the state space to be of a reasonable size), a few papers deal with nonexponential retrial times but with some additional restrictions such as constant retrial rate, only the customer at the head of the retrial queue will attempt to capture a free server, 2-state phase type distribution, and finite retrial orbit. Generally, the retrial queueing models are analyzed as level-dependent queues and hence one has to use some type of a truncation method in performing the analysis of the model. In this paper we study a retrial queueing model with threshold-type policy for orbiting customers in the context of nonexponential retrial times. Using matrix-analytic methods we analyze the model and compare with the classical retrial queueing model through a few illustrative numerical examples. We also compare numerically our threshold retrial queueing model with a previously published retrial queueing model that uses a truncation method.

ON M/M/3/3 RETRIAL QUEUEING SYSTEM

  • KIM, YEONG CHEOL
    • Honam Mathematical Journal
    • /
    • v.17 no.1
    • /
    • pp.141-147
    • /
    • 1995
  • We find a method finding the steady-state probabilities of M/M/3/3 retrial queueing system.

  • PDF

A MULTI-SERVER RETRIAL QUEUEING MODEL WITH POISSON SIGNALS

  • CHAKRAVARTHY, SRINIVAS R.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.601-616
    • /
    • 2021
  • Retrial queueing models have been studied extensively in the literature. These have many practical applications, especially in service sectors. However, retrial queueing models have their own limitations. Typically, analyzing such models involve level-dependent quasi-birth-and-death processes, and hence some form of a truncation or an approximate method or simulation approach is needed to study in steady-state. Secondly, in general, the customers are not served on a first-come-first-served basis. The latter is the case when a new arrival may find a free server while prior arrivals are waiting in the retrial orbit due to the servers being busy during their arrivals. In this paper, we take a different approach to the study of multi-server retrial queues in which the signals are generated in such a way to provide a reasonably fair treatment to all the customers seeking service. Further, this approach makes the study to be level-independent quasi-birth-and-death process. This approach is different from any considered in the literature. Using matrix-analytic methods we analyze MAP/M/c-type retrial queueing models along with Poisson signals in steady-state. Illustrative numerical examples including a comparison with previously published retrial queues are presented and they show marked improvements in providing a quality of service to the customers.

THE ${M_1},{M_/2}/G/l/K$ RETRIAL QUEUEING SYSTEMS WITH PRIORITY

  • Choi, Bong-Dae;Zhu, Dong-Bi
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.691-712
    • /
    • 1998
  • We consider an M$_1$, M$_2$/G/1/ K retrial queueing system with a finite priority queue for type I calls and infinite retrial group for type II calls where blocked type I calls may join the retrial group. These models, for example, can be applied to cellular mobile communication system where handoff calls have higher priority than originating calls. In this paper we apply the supplementary variable method where supplementary variable is the elapsed service time of the call in service. We find the joint generating function of the numbers of calls in the priority queue and the retrial group in closed form and give some performance measures of the system.

  • PDF

Performance Analysis of a Loss Retrial BMAP/PH/N System

  • Kim Che-Soong;Oh Young-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.3
    • /
    • pp.32-37
    • /
    • 2004
  • This paper investigates the mathematical model of multi-server retrial queueing system with the Batch Markovian Arrival Process (BMAP), the Phase type (PH) service distribution and the finite buffer. The sufficient condition for the steady state distribution existence and the algorithm for calculating this distribution are presented. Finally, a formula to solve loss probability in the case of complete admission discipline is derived.

  • PDF

RETRIAL QUEUES WITH A FINITE NUMBER OF SOURCES

  • Artalejo, J.R.
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.503-525
    • /
    • 1998
  • In the theory of retrial queues it is usually assumed that the flow of primary customers is Poisson. This means that the number of independent sources, or potential customers, is infinite and each of them generates primary arrivals very seldom. We consider now retrial queueing systems with a homogeneous population, that is, we assume that a finite number K of identical sources generates the so called quasi-random input. We present a survey of the main results and mathematical tools for finite source retrial queues, concentrating on M/G/1//K and M/M/c//K systems with repeated attempts.

  • PDF

THE M/G/1 FEEDBACK RETRIAL QUEUE WITH TWO TYPES OF CUSTOMERS

  • Lee, Yong-Wan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.875-887
    • /
    • 2005
  • In M/G/1 retrial queueing system with two types of customers and feedback, we derived the joint generating function of the number of customers in two groups by using the supplementary variable method. It is shown that our results are consistent with those already known in the literature when ${\delta}_k\;=\;0(k\;=\;1,\;2),\;{\lambda}_1\;=\;0\;or\;{\lambda}_2\;=\;0$.

A SINGLE SERVER RETRIAL QUEUE WITH VACATION

  • Kalyanaraman, R.;Murugan, S. Pazhani Bala
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.721-732
    • /
    • 2008
  • A single server infinite capacity queueing system with Poisson arrival and a general service time distribution along with repeated attempt and server vacation is considered. We made a comprehensive analysis of the system including ergodicity and limiting behaviour. Some operating characteristics are derived and numerical results are presented to test the feasibility of the queueing model.

  • PDF

AN APPROXIMATION FOR THE QUEUE LENGTH DISTRIBUTION IN A MULTI-SERVER RETRIAL QUEUE

  • Kim, Jeongsim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.95-102
    • /
    • 2016
  • Multi-server queueing systems with retrials are widely used to model problems in a call center. We present an explicit formula for an approximation of the queue length distribution in a multi-server retrial queue, by using the Lerch transcendent. Accuracy of our approximation is shown in the numerical examples.

RETRIAL QUEUEING SYSTEM WITH COLLISION AND IMPATIENCE

  • Kim, Jeong-Sim
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.647-653
    • /
    • 2010
  • We consider an M/M/1 retrial queue with collision and impatience. It is shown that the generating functions of the joint distributions of the server state and the number of customers in the orbit at steady state can be expressed in terms of the confluent hypergeometric functions. We find the performance characteristics of the system such as the blocking probability and the mean number of customers in the orbit.