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AN APPROXIMATION FOR THE QUEUE LENGTH

DISTRIBUTION IN A MULTI-SERVER RETRIAL

QUEUE

Jeongsim Kim*

Abstract. Multi-server queueing systems with retrials are widely
used to model problems in a call center. We present an explicit
formula for an approximation of the queue length distribution in a
multi-server retrial queue, by using the Lerch transcendent. Accu-
racy of our approximation is shown in the numerical examples.

1. Introduction

Retrial queues are queueing systems in which arriving customers
who find all servers occupied may retry for service again after a ran-
dom amount of time. Retrial queues have been widely used to model
many problems/situations in telephone systems, call centers, telecom-
munication networks, computer networks and computer systems, and in
daily life. For an overview regarding retrial queues, refer to the sur-
veys [9, 13, 14]. For further details, refer to the books [7, 10] and the
bibliographies [3, 4, 5].

Typically a call center consists of a finite number of servers that an-
swer customer’s calls, and it can be modelled as a queueing system. In a
queueing model of a call center, the customers are callers and the servers
are either telephone operators or communication equipment. Queues are
formed by callers who are waiting service. The call center can be de-
scribed as follows: When a customer’s call arrives, it will be served
immediately if a server is available. However, if all servers are busy at

Received December 30, 2015; Accepted February 05, 2016.
2010 Mathematics Subject Classification: Primary 60K25.
Key words and phrases: M/M/m retrial queue, queue length distribution, Lerch

transcendent.
The research was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (NRF-2011-0011887).



96 Jeongsim Kim

the arrival time of the call, the caller/customer will join the orbit, and
retry for service again after a random amount of time. It is known that
in a call center environment, the impact of the customer retrial phe-
nomenon on the overall performance, cannot be ignored, refer to [1, 2].
Therefore the multi-server retrial queue is useful in modelling of a call
center. The M/M/m retrial queue is the simplest and most widely used
in call centers. For the applications of retrial queues to call centers, refer
to [1, 2, 6].

Kim et al. [12] studied the exact tail asymptotic formula for the
queue length (the number of customers in the orbit) distribution in the
M/M/m retrial queue. In this paper, based on the tail asymptotic for-
mula of Kim et al. [12], we present an approximate formula for the queue
length distribution in the M/M/m retrial queue. This approximate for-
mula is very simple, but very accurate. Accuracy of our approximation
is shown in the numerical examples. The approximation for the queue
length distribution in a single server retrial queue, can be found in Kim
and Kim [11].

2. The model and preliminaries

We consider the M/M/m retrial queue where customers arrive from
outside the system according to a Poisson process with rate λ. The
service facility consists of m identical servers, and service times are ex-
ponentially distributed with mean µ−1. If there is a free server when
a customer arrives from outside the system, this customer begins to be
served immediately and leaves the system after the service is completed.
On the other hand, any customer who finds all the servers busy upon
arrival joins the orbit and then attempts service after a random amount
of time. If there is a free server when a customer from the orbit attempts
service, this customer receives service immediately and leaves the system
after the service completion. Otherwise the customer comes back to the
orbit immediately and repeats the retrial process. The inter-retrial time,
i.e., the length of the time interval between two consecutive attempts
made by a customer in the orbit, is exponentially distributed with mean
ν−1. The arrival process, the service times, and the inter-retrial times
are assumed to be mutually independent. The offered load ρ is defined
as ρ = λ

mµ . It is assumed that ρ < 1 for stability of the system.

Let N(t) denote the number of customers in the orbit at time t and
S(t) the number of busy servers at time t. Then {(N(t), S(t)) : t ≥ 0}
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is a Markov process with state space {0, 1, 2, . . .} × {0, 1, . . . ,m}. Its
infinitesimal transition rates q(i,j)(k,l) are given by

(a) for 0 ≤ j ≤ m− 1,

q(i,j)(k,l) =


λ if (k, l) = (i, j + 1),
jµ if (k, l) = (i, j − 1),
iν if (k, l) = (i− 1, j + 1),

−(λ+ jµ+ iν) if (k, l) = (i, j),
0 otherwise.

(b) for j = m,

q(i,m)(k,l) =


λ if (k, l) = (i+ 1,m),
mµ if (k, l) = (i,m− 1),

−(λ+mµ) if (k, l) = (i,m),
0 otherwise.

Let N be the number of customers in the orbit at the steady state
and S the number of busy servers at the steady state. Let

pni = P(N = n, S = i), n = 0, 1, . . . , i = 0, 1, . . . ,m.

Kim et al. [12] obtained the following exact tail asymptotic formula for
pni: For i = 0, 1, . . . ,m,

pni ∼
c

i!

(ν
µ

)i
n

λ
mν

−m+i ρn as n→ ∞,(2.1)

where

c =
(m− 1)! (1− ρ)

λ
mν

Γ( λ
mν )

(µ
ν

)m−1E[(m−S)ρm−S−1]

× exp
(∫ 1

ρ

1

E[h(z, S)zN ]

E[(m−S)ρm−S−1zN ]
dz
)
,

with

h(z, i) =
λ

mν

m−i−1∑
j=0

(ρz)j
(j + 1)(i−mρz)(1− z) + ρ(m− i)z

ρzm−i+1

+
λ

mν

(
ρm−i−1 (i−mz)(m− i) + i

z
− i

ρzm−i+1

)
,

and Γ(·) denoting the gamma function defined by Γ(α) =
∫∞
0 e−ttα−1dt.

Here and subsequently, fn ∼ gn as n→ ∞ denotes limn→∞
fn
gn

= 1.
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3. Approximation for the queue length distribution

In this section, we present an explicit formula for an approximation
of the queue length distribution. Note that for every positive constant
b, we have n ∼ n+ b as n→ ∞. Thus (2.1) implies that

pni ∼
c

i!

(ν
µ

)i
(n+ b)

λ
mν

−m+iρn as n→ ∞,

for i = 0, 1, . . . ,m and b > 0. The constant c is very difficult to obtain in
practice. Therefore, we will use an approximation p̃ni for pni as shown
below: For positive real numbers b̃ and c̃,

p̃ni =
c̃

i!

(ν
µ

)i
(n+ b̃)

λ
mν

−m+iρn.(3.1)

To use this approximation, we have to determine b̃ and c̃. We choose b̃
and c̃ such that p̃ni satisfies the following two conditions:

∞∑
n=0

m∑
i=0

p̃ni = 1,(3.2)

∞∑
n=0

m∑
i=0

iµp̃ni = λ,(3.3)

where (3.2) follows from the condition that the total probability is 1 and
(3.3) follows from the fact that the departure rate is equal to the arrival
rate at steady state. By substituting (3.1) into (3.2), we have

1

c̃
=

∞∑
n=0

m∑
i=0

1

i!

(ν
µ

)i
(n+ b̃)

λ
mν

−m+iρn,

which can be rewritten as

1

c̃
=

m∑
i=0

1

i!

(ν
µ

)i
Φ
(
ρ,m− i− λ

mν
, b̃
)
,(3.4)

where Φ(z, s, a) is the Lerch transcendent given by (see Section 1.11 of
[8])

Φ(z, s, a) =

∞∑
n=0

zn

(n+ a)s
, |z| < 1, a ̸= 0,−1,−2, . . . .

By substituting (3.1) into (3.3), we have

λ

c̃
=

m∑
i=1

ν

(i− 1)!

(ν
µ

)i−1
Φ
(
ρ,m− i− λ

mν
, b̃
)
.(3.5)
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By eliminating c̃ from (3.4) and (3.5), we get
m∑
i=0

λ− iµ

i!

(ν
µ

)i
Φ
(
ρ,m− i− λ

mν
, b̃
)
= 0.(3.6)

From this we can compute the value of b̃.
The above procedures can be summarized as follows: The approxi-

mation p̃ni for pni is given as

p̃ni =
c̃

i!

(ν
µ

)i
(n+ b̃)

λ
mν

−m+iρn,

where b̃ is calculated by numerically solving equation (3.6) and c̃ is given
by (3.4).

4. Numerical examples

Numerical examples are presented to show the accuracy of the ap-
proximate formula (3.1). We consider the following three queueing mod-
els, all with retrial rate ν = 1.

Example 4.1. (The M/M/30 retrial queue). We consider theM/M/30

retrial queue where the arrival rate is λ = 1 and the mean service time
is µ−1 = 27, and hence the offered load is ρ = λ

30µ = 0.9.

Example 4.2. (The M/M/100 retrial queue). We consider theM/M/100

retrial queue where the arrival rate is λ = 1 and the mean service time
is µ−1 = 90, and hence the offered load is ρ = λ

100µ = 0.9.

Example 4.3. (The M/M/200 retrial queue). We consider theM/M/200

retrial queue where the arrival rate is λ = 1 and the mean service time
is µ−1 = 180, and hence the offered load is ρ = λ

200µ = 0.9.

b̃ c̃
Example 4.1 9.824789864115019e-001 1.176790359366119e-012
Example 4.2 9.930371010595211e-001 6.699231550073337e-040
Example 4.3 9.971693179242537e-001 6.052717076200984e-079

Table 1. The values of b̃ and c̃.

In Figs. 1-3, we plot the exact and approximate values of pni for
Examples 4.1-4.3. The approximate values are obtained by using the
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Figure 1. Exact and approximate values of pni for Ex-
ample 4.1.
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Figure 2. Exact and approximate values of pni for Ex-
ample 4.2.

formula (3.1), along with the values of b̃ and c̃ given in Table 1. The ex-

act values are obtained as follows: It is known that limK→∞ p
(K)
ni = pni,

where p
(K)
ni is the probability that there are n customers in the orbit and
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Figure 3. Exact and approximate values of pni for Ex-
ample 4.3.

the number of busy servers is i at steady state in the M/M/m retrial
queue with finite orbit capacity K. The probability pni is obtained as

p
(K)
ni such that p

(K)
ni does not vary numerically as K increases. We note

that the calculation time of the exact values rapidly increases as the
number of servers becomes larger. Figs. 1-3 show that our approxima-
tion is very accurate.
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