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RETRIAL QUEUEING SYSTEM WITH
COLLISION AND IMPATIENCE

Jeongsim Kim

Abstract. We consider an M/M/1 retrial queue with collision and impa-
tience. It is shown that the generating functions of the joint distributions
of the server state and the number of customers in the orbit at steady
state can be expressed in terms of the confluent hypergeometric func-
tions. We find the performance characteristics of the system such as the
blocking probability and the mean number of customers in the orbit.

1. Introduction

Retrial queues are queueing systems in which arriving customers who find
all servers occupied may retry for service again after a random amount of
time. Retrial queues have been widely used to model many problems in tele-
phone systems, call centers, telecommunication networks, computer networks
and computer systems, and in daily life. Detailed overviews for retrial queues
can be found in the bibliographies [3, 4, 5], the surveys [9, 12], and the books
[6, 10].

Retrial queues are characterized by the following feature: If the server is
idle when a customer arrives from outside the system, this customer begins to
be served immediately and leaves the system after service is completed. On
the other hand, any customer who finds the server busy upon arrival joins a
retrial group, called an orbit. If the server is idle when a customer from the
orbit attempts service, this customer receives service immediately and leaves
the system after service completion. Otherwise the customer comes back to
the orbit immediately and repeats the retrial process.

For example, consider a call center scenario. Typically a call center consists
of a finite number of servers that answer customer calls. In a queueing model
of a call center, the customers are callers, the servers are telephone agents (op-
erators or communications equipment), and queues are populated by callers
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that await service. The operations of the call center can be described as fol-
lows: When a customer call arrives, it will be served immediately if a server
is available. If all servers are busy with other calls, the customer will be put
on hold, and will be asked to wait until a server becomes available. The call
center may choose to announce an expected waiting time to the customer at
this point. Some customers are patient enough to wait for a server to become
available. Other customers will hang up immediately upon hearing the waiting
time announcement or abandon after waiting for some time. It is known that
in a call center scenario, the impact of customer retrial phenomenon cannot be
ignored for the performance of the whole system, see [1, 2]. Therefore M/M/m
retrial queue with impatience arises naturally as a model of a call center. In
recent publications [2, 7], the authors modelled a call center as the M/M/m re-
trial queue with exponential impatience times. Aguir et al. [2] proposed a fluid
approximation to estimate the stationary retrial rate in the system. Artalejo
and Pla [7] presented simple approximations based on truncation for obtaining
the number of customers in the system.

Due to the complexity of the analysis in the M/M/m retrial queue with im-
patience, no explicit formulas are obtained for any probability characteristics
of retrial queues with multiple servers. Hence, to obtain an exact analytical
expression for the steady state probabilities, we consider the M/M/1 retrial
queue with impatience, which has the following additional feature: If an arriv-
ing customer finds the server busy, then the arriving customer collides with a
customer in service, both customers join the orbit and the server becomes idle
immediately. For instance, in the unslotted 1- and pi-persistent Carrier Sense
Multiple Access with Collision Detection (CSMA-CD) protocols for a fiber op-
tic bus network with a finite number of stations, each of which has an infinite
storage buffer, the collisions occur during the transmission of arbitrary length
packets because no slot synchronization is needed. See, for example, [11] for a
single server retrial queue with collisions.

In this paper, we consider the M/M/1 retrial queue with collision and impa-
tience. We show that the generating functions of the joint distributions of the
server state and the number of customers in the orbit at steady state can be ex-
pressed in terms of the confluent hypergeometric functions. In addition, we find
the performance characteristics of the system such as the blocking probability
and the mean number of customers in the orbit.

2. Joint distribution of server state and queue length

Consider a single server retrial queue where customers arrive from outside
the system according to a Poisson process with rate λ. If the server is idle, the
arriving customer/the customer from the orbit begins to be served immediately
and leaves the system after service is competed. The service times of customers
are exponentially distributed with mean µ−1. If the server is busy, the arriving
customer/the customer from the orbit collides with the customer in service
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and both result in being shifted to the orbit. The customer in the orbit either
attempts service again after a random time or gives up receiving service and
leaves the system after a random time. The inter-retrial time and impatience
time of each customer in the orbit are exponentially distributed with mean ν−1

and δ−1, respectively. The arrival process, the service times, the impatience
times, and the retrial times are assumed to be mutually independent.

Let N(t) denote the number of customers in the orbit at time t. Let X(t) = 1
or 0 according as the server is busy or idle at time t. The process {(N(t), X(t)) :
t ≥ 0} is a Markov process with state space {0, 1, 2, . . .} × {0, 1}. Let

pn = lim
t→∞

P{N(t) = n,X(t) = 1},
qn = lim

t→∞
P{N(t) = n,X(t) = 0},

be the joint distributions of the server state and the queue length (i.e., the num-
ber of customers in the orbit) at steady state. The corresponding generating
functions are denoted by

p(z) =
∞∑

n=0

pnzn, q(z) =
∞∑

n=0

qnzn.

In the following theorem, it is shown that the generating functions of the
joint distributions can be expressed in terms of the confluent hypergeometric
functions (see e.g., [8]), which is defined by

1F1 (α, β; x) =
∞∑

n=0

(α)n

(β)n

xn

n!
, β 6= 0,−1,−2, . . . ,(1)

where

(τ)n =
{

1 for n = 0,
τ(τ + 1) · · · (τ + n− 1) for n ≥ 1,

is the Pochhammer symbol.

Theorem 1. For the M/M/1 retrial queue with collision and impatience, the
joint distributions of the server state and the queue length in the steady state
are given by the following generating functions:

p(z) = g(0)e
λ
δ z

1F1

(
C

A
, B;A(

δ

2ν + δ
− z)

)
,

q(z) = g(0)e
λ
δ z

[
(z +

µ

λ
) 1F1

(
C

A
,B; A(

δ

2ν + δ
− z)

)

+
Cδ

Bλ(ν + δ)
(δ − (2ν + δ)z) 1F1

(
C

A
+ 1, B + 1; A(

δ

2ν + δ
− z)

)]
,
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where




A = 2λ(ν+δ)
δ(2ν+δ) ,

B = δ3+4νδ2+2λδ2+µδ2+4ν2δ+3νµδ+2λνδ+2ν2µ
δ(2ν+δ)2 ,

C = λ(δ+ν)(δ+µ)
δ2(2ν+δ) ,

(2)

and

(3)
g(0) = e−

λ
δ

[
(2 +

µ

λ
) 1F1

(
C

A
, B;− 2νA

2ν + δ

)

− 2Cνδ

Bλ(ν + δ) 1F1

(
C

A
+ 1, B + 1;− 2νA

2ν + δ

)]−1

,

with 1F1 denoting the confluent hypergeometric function given in (1).

Proof. Following the standard procedure, we obtain the equilibrium equations:

{λ + µ + n(ν + δ)}pn = λqn + (n + 1)νqn+1 + (n + 1)δpn+1,

{λ + n(ν + δ)}qn = λpn−2 + (n− 1)νpn−1 + (n + 1)δqn+1 + µpn,

with the convention that p−1 = p−2 = 0. Multiplying both sides of each
equation by zn and summing over all n, we obtain

{(ν + δ)z − δ}p′(z)− νq′(z) = −(λ + µ)p(z) + λq(z),(4)
−νz2p′(z) + {(ν + δ)z − δ}q′(z) = (λz2 + µ)p(z)− λq(z).(5)

Eliminating q′(z) from (4) and (5), we have

(6) δ{(2ν + δ)z − δ}p′(z) = {νλz − (νµ + δλ + δµ)}p(z) + λ(ν + δ)q(z).

Differentiating (6) with respect to z yields

(7)
δ{(2ν + δ)z − δ}p′′(z) = [ νλz − {δ2 + (λ + µ + 2ν)δ + νµ}]p′(z)

+ νλp(z) + λ(ν + δ)q′(z).

Eliminating q′(z) from (4) and (7), we have
(8)

νδ{(2ν + δ)z − δ}p′′(z)

= {(2ν2λ + 2λνδ + λδ2)z − (νδ2 + 2νδλ + νδµ + 2ν2δ + ν2µ + λδ2)} p′(z)

+ (λ2ν + λνµ + λ2δ + λδµ + ν2λ)p(z)− λ2(ν + δ)q(z).

Eliminating q(z) from (6) and (8), we get the following differential equation for
p(z):

(9)
δ{(2ν + δ)z − δ}p′′(z) = {2νλz − (δ2 + δµ + 2δλ + 2δν + νµ)}p′(z)

+ λ{λz + (λ + ν)}p(z).

Letting

f(z) = e−
λ
δ zp(z),(10)
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we can rewrite (9) as

(11)
δ{(2ν + δ)z − δ}f ′′(z)+ {2λ(ν + δ)z + (δ2 + δµ + 2δν + νµ)}f ′(z)

+ (λδ + λµ + λν +
λνµ

δ
)f(z) = 0.

The transformations

x = z − δ

2ν + δ
and g(x) = f(z)(12)

translate (11) into

xg′′(x) + (Ax + B)g′(x) + Cg(x) = 0,

where A,B,C are given in (2). Solving the above differential equation, we have

g(x) = g(0) 1F1

(
C

A
,B;−Ax

)
,

with 1F1 given in (1). According to (10) and (12), we have p(z) = e
λ
δ zg(z −

δ
2ν+δ ), and so

p(z) = g(0)e
λ
δ z

1F1

(
C

A
,B; A(

δ

2ν + δ
− z)

)
.(13)

Differentiating (13) with respect to z gives

(14)
p′(z) = g(0)e

λ
δ z

[
λ

δ
1F1

(
C

A
,B;A(

δ

2ν + δ
− z)

)

−C

B
1F1

(
C

A
+ 1, B + 1; A(

δ

2ν + δ
− z)

)]
,

because d
dx 1F1(α, β; γx) = γ α

β 1F1(α + 1, β + 1; γx). Substituting (13) and
(14) into (6) and doing simple manipulations yields

q(z) = g(0)e
λ
δ z

[
(z +

µ

λ
) 1F1

(
C

A
,B; A(

δ

2ν + δ
− z)

)

+(Dz + E) 1F1

(
C

A
+ 1, B + 1; A(

δ

2ν + δ
− z)

)]
,

where D = − δ(2ν+δ)
λ(ν+δ)

C
B and E = δ2

λ(ν+δ)
C
B . Finally, the constant g(0) is deter-

mined by the normalization condition p(1) + q(1) = 1, which implies (3). ¤

3. Performance characteristics

In this section, with the help of generating functions p(z), q(z) given in The-
orem 1, we get performance characteristics of the system such as the blocking
probability and the mean number of customers in the orbit.
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Blocking probability. The blocking probability Pb, i.e., probability that the
server is busy, is given by Pb = p(1). According to Theorem 1, we have

Pb = g(0)e
λ
δ 1F1

(
C

A
,B;− 2νA

2ν + δ

)
.

Substitution of (3) into the above yields

Pb =
Bλ(ν + δ)

B(2λ + µ)(ν + δ)− 2HCνδ
,

where

H =
1F1

(
C
A + 1, B + 1;− 2νA

2ν+δ

)

1F1

(
C
A , B;− 2νA

2ν+δ

) .

Mean number of customers in the orbit. Let N denote a generic random
variable for the number of customers in the orbit at steady state. Then the
mean EN is given by EN = p′(1) + q′(1). Therefore, according to Theorem 1,
we have

EN = g(0)e
λ
δ

{
2λ + µ + δ

δ
1F1

(
C

A
,B;− 2νA

2ν + δ

)

−C

B

4λν + 2νδ + 2λδ + δ2 + µν + µδ

λ(ν + δ)

×1F1

(
C

A
+ 1, B + 1;− 2νA

2ν + δ

)

+
C

B(B + 1)
2ν(3δ + µ)
δ(2ν + δ) 1F1

(
C

A
+ 2, B + 2;− 2νA

2ν + δ

)}
.

Substitution of (3) into the above yields

EN =
B(ν + δ)

B(2λ + µ)(ν + δ)− 2HCνδ

{
λ(2λ + µ + δ)

δ

−HC

B

4νλ + 2νδ + 2λδ + δ2 + µν + µδ

ν + δ
+

KCλ

B(B + 1)
2ν(3δ + µ)
δ(2ν + δ)

}
,

where

K =
1F1

(
C
A + 2, B + 2;− 2νA

2ν+δ

)

1F1

(
C
A , B;− 2νA

2ν+δ

) .
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