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RETRIAL QUEUES WITH
A FINITE NUMBER OF SOURCES

J. R. ARTALEJO

ABSTRACT. In the theory of retrial queues it is usually assumed that
the flow of primary customers is Poisson. This means that the num-
ber of independent sources, or potential customers, is infinite and
each of them generates primary arrivals very seldom. We consider
now retrial queueing systems with a homogeneous population, that
is, we assume that a finite number K of identical sources generates
the so called quasi-random input. We present a survey of the main
results and mathematical tools for finite source retrial queues, con-

centrating on M/G/1//K and M/M/c//K systems with repeated
attempts.

1. Introduction

The main characteristic of a retrial queue is that a customer who finds
the service facility busy upon arrival is obliged to leave the service area,
but some time later he comes back to re-initiate his demand. Between
trials a customer is said to be “in orbit”. Most papers assume that the
population of potential customers is very large so the input stream is
Poisson. In such a description, the probability of a new arrival during any
interval of duration dt is given by Adt + o(dt) as dt — 0, independently
of the state of the system at time ¢t. The analysis of retrial queueing
systems in the case of non-exponentially distributed intervals between
primary arrivals is still an open problem. Some recent contributions by
Choi and Chang (1998) and Dudin and Klimenok (1998) consider arrival
processes modelled as Batch Markovian Arrival Processes.
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The next extension concerns a limited number of sources K. Each
source is either free or in the system (orbit and service facility) at any
time. We consider that the input stream is the so called quasirandom
input; that is, the probability that any particular source generates a
request for service in any interval (¢,t + dt) is adt + o(dt) as dt — 0 if
the source is idle at time ¢, and zero if the source is being served or in
orbit at time ¢, independently of the behaviour of any other sources.

The main features of the theory of retrial queues can be found in
Falin and Templeton (1997). On the other hand, systems with classical
waiting lines and finite population have been reviewed in detail by Takagi
(1993).

In this paper we give a complete survey of retrial queues with quasir-
andom input. The analysis of the basic models of type M/G/1//K and
M/M/c//K in Kendall’s notation is the subject matter of sections 2 and
3, respectively. In section 4, we give some examples of systems which
can be modelled as retrial queues with a finite number of sources.

2. The M/G/1//K retrial queue

2.1. Model description

We assume that the arrival process of primary calls is quasirandom
with parameter a. If the server is free then the call is immediately served.
When the server is busy, the source generates a Poisson flow of repeated
attempts with parameter p until it finds the server free. The service
times have probability distribution function B(z) with B(0) = 0. We
denote its Laplace-Stieltjes transform as (3(s) and its nth moment as £,.
The input stream of primary arrivals, service times and intervals between
successive repeated attempts are assumed to be mutually independent.

The state of the system can be described by means of the process
(C(t), N(t),&(t)) where C(t) is 0 or 1 according as the server is free or
busy at time ¢, N(t) is the number of sources in orbit and, if C(¢t) = 1,
then £(¢) is the supplementary variable denoting the elapsed service time.

2.2, Joint distribution of the server state and the orbit length
in steady state

There exists an abundance of techniques for handling the analysis of
queue length distributions. Our first approach in this section will be
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the method of supplementary variable combined with a discrete trans-
formation. However, we will also discuss a second approach based on
the theory of regenerative processes.

The first approach was introduced by Ohmura and Takahashi (1985).
Later, Falin and Artalejo (1998) employ the same approach for improving
the expressions of the main performance characteristics. Their results
can be summarized as follows. We define the probabilities (densities)

(1) Por = P{C(t) =0, N(t) = n}, 0<n<K-1,

4

(2) pln(-'L') = d:BP{C(t) = 1a§(t) <z N(t) = TL}, 0<n<K-1,

(3) P =P{C(t) =1,N(t) =n} = /Ooopln(:n)dz, 0<n<K-1.

Then, following the method of supplementary variables, we find that
the limiting probabilities as ¢ — 0o satisfy the equations of statistical
equilibrium:

@ (K — n)o + nps)pon = ] " pin(@)b(z)dz,
(5)  Pa®) = —((K —n — D)+ b(@))pin(z) + (K — n)apynar(@),

(6) pln(o) = (K - n)ap0n + (n + 1)/“p0,n+l)

where b(z) = B'(z)/(1 — B(z)) is the hazard rate function of B(z) and
Pox = p1,-1 = 0.

We can rewrite (5) with the help of so-called discrete transformations
(Jaiswal (1968)). A discrete transformation is a specific linear replace-
ment of variables where a set of unknown variables p = (po, ... ,px-1) is
replaced by ¢ = (qo, ... ,qk-1)’ = AP/, where A is a non-singular K x K
matrix.

We introduce the transformation defined by
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(7) gm = K_im (K _T:L - n)pm

n=0

so the inverse transformation is given by

n

K-1-n+m
®) pn=2<—1>m( - )qK_l_W,, O<n<K-1

m=0

Let Gom, q1m(Z), q1m, 0 < m < K —1, be the images of sequences pyn,,
P1m(Z), Pim, respectively, under discrete transformation (7).

The variables ¢p,,, 0 < m < K — 1, can be determined with the help
of the following recursion

(9) Gom = Crmox-1, 0<m<K-2,

(10) Go.k-1=v(v+a+ (K -1+ (a—p)Ci)7},

where v = 1/, and the coefficients C,, can be recursively computed by
putting go k-1 = 1 in the equation

(K =m—1)p+ (m+1a)(1 - B(ma))
(11)  +mpB(ma))gom — (K — m)pB(ma)gom-1
+(m + 1)(a - /'L)(]' - /B(ma))qO,m+1 = Oa 1 <m< K - 1)

where we have assumed that gyx = o1 = 0.
Then, ¢1,,(0) and ¢;,,(z) are given by

(12) B(ma)qim(0)
= (K =m=1p+(m+1)a)gom + (m + 1)(a = )gom1,

(13) @im(Z) = qm(0)(1 — B(z)) exp{—maz}.

Obviously, g1, follows by integrating qim(x).
Once we have obtained the limiting probabilities and probability den-
sities, we can derive formulae for the main system performance measures.
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It should be pointed out that all main characteristics can be expressed
in terms of the server utilization p; = P{C(¢) = 1}. Namely,
1. The server utilization

(14) 71 = 1 = qoo-

2. The mean number of sources in orbit

(15) N=E[N(t) =K -o Y a+v)p.

3. The mean rate of generation of primary arrivals

(16) X =aE[K — C(t) — N(t)] = vp..

4. The mean waiting time

1

(17) E[W]= (X)_ N=@wp)'K—-a '~y
5. The variance of the orbit length

VarN(t) = — pi((K — Dap(2 - B(a))
+ (a+v)((Bu —o)(1 - B(a)) + uB(a)))
(18) x (a1 = pla)(a@—u)™
+ Kp(2 - B(@)((1 - Bla))(e— )~
- (@ N a+v)p}, if a#p,
VarN(t)= v(K—-1)(v+aK)!
(19) X ((K = 2)B(e)(K — (K = 1)B(e))™

+ ((@e=-v)K+2w)(v+aK)?), if a=p.

We next discuss a second approach for computing the limiting proba-
bilities py, and py,. De Kok (1984) and Schellhaas (1986) have considered
single server retrial queues in which the arrival process is modelled as a
state dependent Markov process with parameter A;, when (C(t), N(t)) is
in state (i,n). The M/G/1//K retrial queue can be obtained as a special
case when \;, = a(K —i—n), i € {0,1}, 0 <n < K—1. The advantage
of this approach is that it holds valid in the context of complex systems
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such as models operating under the simultaneous presence of repeated
attempts and negative arrivals (see Artalejo and Gomez-Corral (1996)).

Following the methodology under the assumptions considered by De
Kok (1984), we find that the limiting probabilities satisfy the following
equations

(20) npPon = )\l,n—lpl,n—ly n> 1,
n+1
Aok + k
(21) P1in = AooAonPoo + Z ‘O_kk‘u_ﬂ/\l,k—lAknpl,k—ly n >0,
k=1
1 00
(22) Z Zpin = 17
=0 n=
where
(23) A = — s >0,

B,
Aot +(n+1)p "

ku Aok
= —— —Bp .+ —2%
Mok + kT X + ke

The quantities By, might be determined for each specific model. For
the M/G/1//K, we have

(24) A Bin, 0<k<n.

* K_k_]‘ —at\n—~k( _—at\K-n—1
) Bom [ (0 E D am e - o
0<k<n<K-1.

The above expressions provide a stable recursive scheme for comput-
ing {pon}re; and {pin}nr, in terms of py. Then, we find py by using
the normalization equation (22).

The derivation of the above methodology is based on a well-known
property of regenerative processes. Let us define a regeneration cycle T
as the time interval between two successive visits of process (C(t), N(t))
to state (0, 0); further, define T}, as the amount of time in T during which
(C(t),N(t)) = (i,n). Then, we have p;, = E[T},] /E[T]. An appeal to
PASTA property and Wald’s identity is also needed.
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2.3. The busy period

Let assume that all sources are free at time ¢ = 0 and one of them
just generates a request for service. Then, a busy period L starts.
The busy period concludes at the first service completion epoch at
which (C(t), N(t)) returns to the state (0,0). The busy period of the
M/G/1//K retrial queue was studied by Falin and Artalejo (1998).
Their results can be summarized as follows.

We consider the following transient taboo probabilities and density
probabilities

(26) POn(t):P{L>t7c(t):01N(t):n}a 1<n<K-1,

(1) Pulti) = —P{L>40() = LEW) <z N() =n},
0<n<K—1,

(28) Pn(t) = / Pu(t,z)dz, O0<n<K—1.
0

By writing the differential equations that govern the motion of these
taboo probabilities and using again the transformation (7), we can find
the following explicit expressions for the Laplace transform E [e‘SL] and
the first moments of L:

E[e™] = (B(s) = (s + (K - 1)p+a)(1 ~ B(s)))Bo(s)
(29) — (= p)(1 = B(s))Bi(s))
(14 (s + (K — D+ ) (1 — B(s))) Ag(s)
+ (a—p)(1—B(s)A(s)™"

X

The coefficients A;(s) and B;(s), ¢ € {0,1}, can be determined from
the recursive equations:
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AK_l(S) = 0, BK_l(S) = 0,
Ax-2(s) = (4B(s + (K = 1)a))™",  Br-a(s) = —p7,

() n(5) 1 (5) Arn(5) = () Area() = = (1),
(30) m=K-2,...,1
U (8)Bm(s) + vm(8) Bm+1(8) — Wim(8)Bm-1(s)= (KT; 1) B(s + ma),
m=K-2,...,1

where

un(s) = s+ (K —m—1)p+ (m+1)a)(1 - B(s + ma))
(31) + mpB(s + ma),

vm(s) = (m+1)(a—p)(1— (s + ma)),

wm(s) = (K —m)pB(s+ ma).

(32)  E[L] = Bi+(1+5((K-1)p+a))(A(0) + Bo(0))
+(a ~ u)B1(A1(0) + B:1(0)),

(33) E[I’] = B +2B[L((1+A((K - 1)p+ a))A(0)
+(a ~ u)B1A1(0))
+G((K — 1)z + a)(Ao(0) + Bo(0))
+(a ~ p)B2(A1(0) + B1(0))
—2(1+ Bi((K = )p + @))(Ay(0) + By(0))
—2(e — )81 (A1(0) + B1(0)).

The quantities A4;(0) and B;(0), ¢ € {0, 1}, follow from equations (30)
by putting s = 0. Finally, A}(0).and Bj(0), i € {0, 1}, can be found with
the help of the following system of recursive equations
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x-1(0) =0, B}<—1(0) =0,
(34)  Ak_5(0) = =B ((K — Da)(uB((K —1)a))™,  Bg_,(0)=0,
Um(0) A7 (0) + v (0) A7 11(0) — wim(0) A7, (0)
= (m+1)(a — W) () Anss (0)
— (1 =F(me)((K —1-2m)p+ (m+ 1)a))An(0)
+ (K —m)uf (ma)A,—1(0), m=K-2,...,1
Un(0) By (0) + 9 (0) Bpo1 (0) — wm(0) B, 1 (0)
(m + 1)(a — p)B' (ma) By.1(0)
- (1= (ma)((K—-1-2m)u+ (m+1)a))Bn,(0)
(K — m)uB'(ma) Bn-1(0)

(K_1>[3’(ma), m=K-2,...,1
m

2.4. The model with server vacations

In this section we consider the modification of the main model in
which the server operates according to a “starting vacation” strategy;
i.e., when the server is idle at the arriving epoch of a primary or returning
source, it either starts its service time (with probability ;) or takes a
vacation (with probability @, = 1 — ax).The recovery probabilities ay
depend on the number of sources in the orbit at arrival time and excludes
to the arriving source if it comes from the orbit. The system description
given in section 2.1 must be modified as follows. Now C(t) takes values
on {0,1,2}. The case C(t) = 2 means that the server is on vacation
at time f. Successive server vacation times are independent random
variables with probability distribution function V(z) and first moment
v. The independence among the vacation times and the rest of system
components is assumed.

This model was considered by Li and Yang (1995) who investigated
the limiting distribution following the method of supplementary vari-
ables and the method of characteristics for solving quasi-linear par-
tial differential equations. They showed that the limiting probab1ht1es
{pon} X, and probability densities {p;,(z)}2 K1 and {pon(2)}, (the con-
tinuous parameter = denotes either the elapsed time of the source being
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served (if C(t) = 1) or the elapsed time of the vacation period in progress
at time ¢ (if C(t) = 2)) are given by

(35)

-1
Poo = (Z(l + oK — n)(anfi + @) + npon-181 + Tn-1v))Qn > ,

(36) Pon = QnPoos 1<n<K,

p(e) = (1-B(2)) Z ((g 3 i: D o Untaz(] _ g-azyck

k=0

(37) x(a(K — k)Qk + (]C + 1)/,L Qk+1)a’k) Poo,
0<n<K-1,

= K-k
on(z) = (1— V(z)) —(K—n)az(l _ e—az)n—k
P2n(2) ( g <(K B n) e
(38) x(a(K — k + 1)Qx-1 + kp Qi)Tr_1) Poos
1<n<K,

where {Q,} _o satisfies the following recursion

(39)
1 .
Qinn = ZZQk]Qk) 0<i<K-1, Q=1
Fi+1i 150 join
Qi = @op(K — k)o+ apoyjop-ikp + by @k (K — k)o 4 bgGg_1ku,

0<k<i+1,
R I -y /0 e"(K-i-haz(] _ gen)ikgB(z) if 0 <k <i< K,
0, otherwise,

00
b — { (55 / e~ E—taz( _ gmamyi-kgy/(z) if0 <k <i< K,
ki — 0

0, otherwise.
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The major performance characteristics can be expressed as follows:
1. The server utilization

K
(40) p1 = B1poo Z(ana(K —n) + ap1np)Qn.
n=0

2. The mean number of sources in the orbit

(41) E[N(t)] +p = K —alvpy.

3. The mean total time spent in the system

(42) EW]|+8 =@wn)'K—-a.
2.5. Approximations and numerical results

It is clear that real teletraffic and computer systems often do not sat-
isfy assumptions made by classical queueing models. As a consequence, a
possible alternative based on information theoretic techniques has been
successfully developed since the mid-60s. The principles of maximum
entropy and minimum cross-entropy provide a new and powerful frame-
work for the approximate analysis of queueing systems.

Artalejo and Gomez-Corral (1995) applied the maximum entropy
principle to M/G/1//K retrial queues. Two different retrial policies
were considered. In Model I any source finding the server busy joins
the orbit. After an exponentially distributed time with rate y, and in-
dependently of each other source, the marked one tries his luck again.
Thus this policy agrees with the classical description given in section
2.1. The description of the repeated attempts in Model 11 is collective.
If N(t) > 0 then the next attempt to get service is exponentially distri-
buted with rate p independently of the orbit size. This second retrial
policy arises in computer networks where the server must check if the
transmission medium is or not available, or in models where the server
is required to search for customers.

Suppose that the available information about the queueing system
places a number of constraints. Then the principle of maximum entropy
gives a method for computing a unique estimate for the unknown prob-
ability distribution {p,/ n € S}. To that end, the principle states that,
of all distributions satisfying the constraints, the minimally prejudiced
distribution is the one that maximizes Shannon’s entropy
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(43) H(p)=—) pulnpn.

neS

It is assumed that the constraints can be expressed in terms of mean
value formulae of the form

nes

(45) Y filn)pn=F, 1<k<m

nes

The maximization of Shannon’s functional can be carried out using
Lagrange’s method of undetermined multipliers leading to the solution

(46) Pn = exp {—ﬂo = fk(n)ﬁk} ,  mES,
exp{f} = D exp {— > fk(n)ﬁk} ,
neSs k=1

where G, 1 < kK < m, are the Lagrangian multipliers corresponding
to the set of mean value constraints (45), and (3 is associated to the
normalization constraint (44).

Artalejo and Gomez-Corral (1995) discussed the maximum entropy
solution of M/G/1//K retrial queues when the first moments of the
stationary distribution and the equality relation

(47) TtftPon = C\{(K - n)pl,n—la 1 <n < K ~ 11

are simultaneously considered as possible constraints.

The accuracy of the maximum entropy approach was tested for several
service time distributions and compared with the results obtained from
the classical queueing methodology. The use of the first two moments
of sequences {pin}nKz_Ol, for i € {0,1}, and the auxiliary constraint (47)
leads to very good levels of accuracy.

Numerical results showing how the system performance measures are
affected by the system parameters are given in the papers by Ohmura
and Takahashi (1985) and Falin and Artalejo (1997). In these papers, the



Retrial queues with a finite number of sources 515

interested reader may found a variety of figures and tables illustrating
the effect of the system parameters (¢, i, 3 and K) on the mean waiting
time, the server utilization, the mean rate of generation of primary ar-
rivals and other performance characteristics. In addition, Ohmura and
Takahashi (1985) developed some simulation results for analyzing the
relation between E [W]and A3, when the retrial times are not exponen-
tially distributed.

3. The M/M/c//K retrial queue

3.1. Model description

We consider a retrial queueing system with ¢ servers where primary
calls are generated by K > ¢ sources according to a quasirandom input
with rate a. If all servers are occupied at time of arrival of a primary
call, then the source joins the orbit with probability H; and produces a
Poisson flow of repeated attempts with rate u. If all servers are busy at
time of a retrial time completion then the source decides to retry again
with probability Hs, otherwise it leaves the system. The service times
are exponentially distributed with rate v (without loss of generality we
may assume v = 1). The independence among primary calls, retrial and
service times is assumed.

The bivariate process (C(t), N(t)) describing the system state is now
Markovian with state space S = {0,... ,c} x {0,... , M}, where M =
K — c. The elements of its infinitesimal generator are given by

(48)
(K_i’—j)a) if (nam):(i+1aj):
i, if (n,m) = (i— 1,7),
9G.3)nm) = A It if (n,m) = (i + 1,5 — 1),
~((K—i—fa+i+iju), if (n,m) = (4, §),
0, otherwise.

if 0<i<e—1,
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(49)
(M _j)aHl’ if (n7m) = (C,j + 1)a
¢ if (n,m) = (c—~1,7),
G (mm) = Jn(l - Hy), if (n,m) = (¢,j — 1),
—((M-])aHl +C+jﬂ(1 —H2))’ if (nrm) = (C)j)a
0, otherwise.

3.2. Joint distribution of the server state and the orbit length
in steady state

The M/M/c//K retrial queue with persistent subscribers ( when
H; = Hy = 1) was introduced by Kornyshev (1969) who investigated
the limiting probabilities and obtained some useful relationships among
the system performance measures. Later Falin and Templeton (1997)
extended the analysis and studied the waiting time. The model under
consideration including non-persistent sources was investigated by Falin
(1998).

The limiting probabilities satisfy the following set of equations (below
pi; equals 0 if (i, 7) ¢ S):

(K —i—ja+i+ju)p;
(50) = (K—i+1-japi;+({+ Dupi-1je+ @+ Dpigy,
0<i<e~-1,

((M - j)aH1 +c+ ju(l —_ Hg))pcj
(51) = (M+1-j5operj+ (J+ 1)pupe-1,;+1
+ (M = j+1)aHp, ;-1 + (7 + L)p(l — H)pcjnr-

Falin (1998) proposed an algorithm for computing recursively the
probabilities p;;. First, we introduce new unknowns r;; = p;;/pom, for
(2,7) € S. If we could find r;; then p;; could be computed by means

-1
c M
of pij=m;5 > > rij| . The problem is reduced to find the solution
i=0 j=0
of a tridiagonal set of linear equations. It can be solved by using the
method of “forward elimination, backward substitution” which reduces
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the original system to a triangular one. Finally, we avoid subtractions
by introducing appropriate new variables.

Then, the system quality measures can be expressed in terms of the
limiting probabilities as follows:

1. The mean number of sources of repeated calls

(52) N =E[N(t)] = Z Z Dij-

=0 j=0

2. The probability of all servers busy

M
(53) p.=P {C(t) = C} = chj'
=0

3. The mean number of busy servers

c M
(54) Y=E[Ct) =D ip;

i=0 j=0

4. The mean rate of generation of primary calls

(55) A=aE[K-C(t)— N(t)]=a(K-Y — N).
5. The probability of losing a primary call

(56) L=1-Y/\
6. The blocking fraction of primary calls

M (I Nc Y .
(57) By = K—pY——N’ where N, = Z]pcj.

=0
7. The blocking fraction of repeated attempts

(58) Bgr = N,/N.
8. The global blocking probability
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_ aMp.+ (p—a)N,
a(K—-Y — N)+uN’
The particular case H; = Hy; = 1 was investigated by Kornyshev

(1969) by using a different methodology based on the following series of
transformations of the limiting probabilities:

(59)

(60) pij-1(q) = jpii(g — 1) (Z Z Jpii(q — 1)) )

i=0 j=0
0<i<q0<j<M-q 1<qg< M.

Kornyshev (1969) also showed how the major performance character-
istics (mean number of sources in orbit, mean waiting time, the prob-
ability of all servers busy, the blocking fractions of primary calls and
repeated attempts) can be computed from transforms (60).

In the case ¢ = 1 and o # p Falin (1998) found the following explicit
expressions for the joint distribution of the pair (C(¢), N(t)):

1

o (a+1 b+z _

p0n=_|II clfl (F(a,b;¢,7) + KaF(a+ 1,b,¢7)) 1’
i=0

n— 1 .
_ Y rrle+1+9)(b+39) o
(62) Pn = — [l — Ka(F(a,b;c;7)

+ KaF(a+1,b¢7))™!

where

Ko

azu_a, b=-K+1,
14+ (1 - Hy)((K — Do + ) __aH
T U—H)e-o T Tu0-H)

and F(a,b; c;x) is the hypergeometric function defined by

o) ]1

x’ (a +1) b—f—z

F(a,b;c;x) :E ET SR —
7=0 =0
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3.3. Waiting time

Assume that some fixed source ig places a primary request for service
at time ¢t = 0. Then its virtual waiting time W just starts and ends at
the time at which the source starts to be served or decides to leave the
system. Falin (1998) and Falin and Templeton (1997) gave a method for
deriving the distribution of W and its expected value.

Suppose that at time ¢ = 0 there are j sources of repeated calls and i
sources are receiving service. Then we mark one of the sources in orbit
and denote by 7;; its residual waiting time. Let

(63) fz] =P {Tz] <t F = S} gzj(t) =P {Tij < t,]: = L},

where the event {F = S} (respectively {F = L}) denotes that the marked
source is accepted for service (respectively is not served).
Then, the waiting time distribution function is given by

-1 M

(64) P{W<t,F=8}= szﬁz%mfcm()

=0 j=0

65) PW<t,F=L}=3 n((l— H) + Higeynlt))

j=0

where 7;; denotes the probability that the marked source finds the system
in the state (¢, j) upon arrival. With the help of PASTA property ;;
can be reduced to the limiting distribution as follows

oK —i—7j)
N

The analysis of probabilities f;;(¢) and g;;(t) can be done by introduc-
ing an auxiliary Markov process Z(t) with state space S U {S} U {£}.
The special states S and £ are absorbing states. A transition to them
means that the event {F = S} or {F = L} has occurred. The analysis

of Kolmogorov’s backward equations for the Markov chain Z(t) leads to
the following solution

(66) Tij =
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c M

67 PW<tF=5p=1-L-13°3 imifilt)
=0 j=1
1 c M
(68) P{W<tF=L}= L——Zzypug”(t)
=0 j=1

It should be noted that the above expressions reduce the calculation
of the nth moment of W to find the (n—1)th moments of the conditional
waiting times. This fact was exploded by Falin and Artalejo (1998) for
the single server queue with persistent subscribers. They obtained the
following results:

K-1

1
> ipsE n>0.

i=0 j=0

>3

We now denote E[ ] by a(") and E[ ] by b(") These moments
satisfy the following set of equatlons forn>1 and 1 <j<K-1:

(70) —((K )a+3u) +(J—1)ub(")1+(K )ab(") na(n n

(1) ~((K —j — Da+ 16 + ol + (K — j — 1)ab; = —nb{*™.

Eliminating agn) from these relations we get

n(alV + (K = j)a+ ju)b{* ™)
(72) = —((K —j)a+ju)(K — j— 1)ab®,

(5 = Db, + (K = )+ Gu)(K — § — D+ G,
n>1, 1<j<K-1

The above set of equations has the form

(73) —aj-1Xj-1+ Bixs — ViXi+1 = 0j, 1<j<K-1,

where
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Xo=xk =0,  a;=ju,
(74) B = (K —ja+ju)(K - j— o+ jp,
Y = (K = ja+jp)(K —j~1a,
8 =n(a" + ((K = o+ jp)b{"?).
The method of “forward elimination, backward substitution” is again

the key for solving the set of linear equations (73). Following this method
we first calculate variables B; and D; according to the recursive formulae:

(75) Bi = B, Bj=p0—(Bju)lajim, 2<i<K -1,
D1 = (51, Dj = (Sj + (Bj_l)‘laj_le_l, 2 S j S K-1.

X; can be recursively computed in reverse order. Note that §; =
a;+; and the sequence «; is increasing, so it is convenient to introduce
an auxiliary variable Z; = B; — ;.

Then, we obtain

Zy=a, D=4y,
Z; =(Zjo1 +%-1) N Zjos + (05 — jo1)ym1), 2<j5< K -1,
(76) D; = 6; + (Zj-1 + Vj-1) @ja1Djm, 2<j< K -1,
Xk-1=(Zk-1+7K-1)"'Dg_1,
X; = (Z; + %) (Ds +vixse),  G=K-2,...,1
so we only deal with positive numbers.

3.4. Miscellaneous

Numerical examples showing the influence of the system parameters
(e, 1£) on the main performance measures (), B4, Bg, L, E[W]) can be
found in Kornyshev (1969), Falin (1998) and Falin and Artalejo (1998).

The waiting time process was also studied by Dragieva (1994). How-
ever, only expected characteristics were investigated and some results
seem to be incorrect.

Recently, Artalejo et al. (1997) described a versatile finite retrial
queue in a Markovian environment that covers as special cases a wide
variety of queueing phenomena. Its infinitesimal generator can be re-
duced to a finite block-tridiagonal one so well-known matrix methods
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are the key to investigate the limiting distribution and the first pas-
sage times. Models with quasirandom input are also included in this
framework.

4. Applications

4.1. Analysis of subscribers’ behaviour in telephone networks

The pioneering paper by Kornyshev (1969) was motivated by the
analysis of the behaviour of subscribers in real telephone networks. It
was evident that the classical models of telephone systems (waiting lines
with infinite capacity and queues with losses) did not take into account
the existence of a real flow of repeated calls. The main reason for get-
ting a blocked signal when a subscriber calls is to find all trunks busy.
In this sense, the systems with repeated attempts provided an elegant
alternative to understand the retrial phenomena. In this context, Ko-
rnyshev’s paper was the first attempt for investigating the performance
characteristics of servicing systems with an accessible bunch of ¢ lines
and a finite population of subscribers.

4.2. Magnetic disk memory systems

Ohmura and Takahashi (1985) described an application of the
M/G/1//K retrial queue to the waiting time analysis of magnetic disk
memory systems. They consider a memory system where K disk units
share a disk controller (server) and transmit information when they find
the controller idle. Unsatisfied requests are repeated after a disk’s ro-
tation which can be modelled as a constant repetition interval. But, as
simulation shows, an exponential approximation of rotation interval is
suitable in practice.

4.3. Local area networks with CSMA /CD protocol

Li and Yang (1995) applied the M/G/1//K with retrials and server
vacations to the study of a local area network operating under the com-
munication protocol “Carrier Sense Multiple Access with Collision De-
tection” (CSMA/CD). In these networks, a finite number K of users are
connected by a bus (server). The rules governing the transmission of
information in the system, in principle, match the M/G/1//K descrip-
tion. In addition, a phenomenon called “collision” is also considered.
Suppose that an user senses the channel and finds a free signal. Then
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the transmission starts but, due to non-zero propagation delay, during
a certain amount of time 7 any other users may sense the channel and
transmit their messages. In such a case a collision occurs. The user
which transmission time is in progress joins the retrial group and the
rest of users involved in the collision remain in their previous states as
the collision had not occurred. When a collision occurs a recovery time
is needed by the channel to be free again. Li and Yang (1995) modelled
the recovery time as a deterministic vacation period 37", where 7T is the
time required by a signal to travel from one extreme of the channel to
the other.

The interested reader is also referred to Khomichkov (1993, 1995)
where the stationary characteristics of local area networks with proto-
col CSMA/CD are investigated. These papers study interesting models
where more complex assumptions with regard to the time of occupation,
the recovery time and other system devices have been considered.

4.4. Collision avoidance local area networks

An usual feature in local area networks is that several stations use a
common medium for transmission so collisions among messages occur.
These collisions imply the destruction of information and consequently
the performance quality decreases. To avoid this problem a number of
collision-avoidance local area networks have been developed (bus topol-
ogy, star topology, etc.). Janssens (1997) described a local area network
consisting of K network access controllers and the hub (server). To solve
the problem of possible collisions among packets coming from different
controllers, the network is modelled as the M/G/1//K retrial queue and
the analysis is based on the regenerative approach introduced by De Kok
(1984).
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