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THE M;,M,/G/1/K RETRIAL QUEUEING SYSTEMS
WITH PRIORITY

Bong DAE CHol AND DoONG B1I ZHU

ABSTRACT. We consider an M;, My/G/1/K retrial queueing sys-
tem with a finite priority queue for type I calls and infinite retrial
group for type II calls where blocked type I calls may join the retrial
group. These models, for example, can be applied to cellular mobile
communication system where handoff calls have higher priority than
originating calls.

In this paper we apply the supplementary variable method where
supplementary variable is the elapsed service time of the call in ser-
vice. We find the joint generating function of the numbers of calls
in the priority queue and the retrial group in closed form and give
some performance measures of the system.

1. Introduction and model description

Retrial queueing systems are characterized by the feature that arriv-
ing calls who find the server busy join the retrial group to try again for
their requests in random order and at random intervals. Retrial queues
have been widely used to model many problems in telephone switching
systems, computer and communication systems. For the main surveys,
see Falin and Templeton [11] for retrial queue with one type of calls, and
Choi and Chang [3] for retrial queue with two types of calls.

Retrial queues with two types of calls are the typical model of tele-
phone exchange with subscriber line modules and base station in a mo-
bile cellular radio communication system.

Choi and Park [2] investigated M/G/1 retrial queue with two types
of calls where service times for both types of calls are independent and
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identically distributed and priority queue has infinite capacity. Khalil et
al. [13] investigated the above model at Makovian level in detail. Later
Falin et al. [10] extended Choi and Park’s model to the case where two
types of calls may have different service time distributions. B. D. Choi
et al. [6] considered Choi and Park’s model in which priority queue has
finite capacity. They found the joint generating functions of two queue
lengths by using supplementary variable method where supplementary
variable is the remaining service time .

In this paper, we consider My, M2/G/1/K retrial queue with two type
calls where blocked type I calls may allow to join the retrial group (see
Figure 1). Type I calls and type II calls arrive independently of each
other according to Poisson processes with rate A; and A, respectively.
An arriving call who finds the server idle begins to be served immediately.
When the server is busy, an arriving type I call joins the priority queue
if there is a waiting position, but if there are no waiting positions in
the priority queue, he enters the retrial group with probability a or
leaves the system with probability 1 — a. Type I calls have a direct
access to the server and can detect the epoch of the server release and
immediately enter service. If an arriving type II call finds the server
busy, then he joins the retrial group in order to seek service again after
random amount of time. A call in the retrial group always returns to
the retrial group when he finds the server busy on his retrial attempt to
the server . Note that calls in the retrial group will be served only when
there are no type I calls in the priority queue. Consequently, type I calls
have non-preemptive priority over type II calls.

The retrial time (the time interval between two consecutive attempts
made by a call in the retrial group) is exponentially distributed with
mean 1/v and is independent of all previous retrial times and all the
other stochastic processes in the system. The service times of calls are
independent and identically distributed with distribution function B(z)

and mean 1/p. Let b*(9) = [;° e"%*dB(z) and b9 (6) = ‘N)fi—lg,-(o)—).

This paper is organized as follows. In Section 2, we find the stability
condition of the system. In section 3, we obtain the joint generating
functions of the number of calls in the priority queue and the retrial
group in steady state. In section 4, we compute some performance mea-
sures and give some numerical examples.
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FIGURE 1. Mathematical model of the system

2. Ergodicity of the system

Define the processes {N,(t)}, {NV.(¢)}, {dn} as follows
N,(t)= the number of calls in the priority queue at time ¢,
N, (t)= the number of calls in the retrial group at time ¢,
d, = the departure epoch of the n-th served call.
We consider the processes { X, }, {Y»} embedded at the time d, just after
the departure of the n-th served call as follows

Xp=Ny(dpt),  Yp=N(dot).

Then Z, = (X,,Y,) forms two dimensional Markov chain with state
space

{('L,])Z=O,1”Ka]=0717}

Let
a; = P{j arrivals of type I during a service time}
= / T ety
0 J! ’
h(t) = the mean number of calls accumulated in the retrial group

during a busy period generated by 2 calls in priority queue
and A(0) = 0.
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Since the calls in the retrial group are served only when the priority
queue is empty, intuitively k(1) should be less than 1 in order for {Z,}
to be ergodic. Indeed, h(1) < 1is a necessary and sufficient condition for

stability (see Theoreml). By conditioning the number of type I arrivals
during a service time, We obtain

h(1) = ao/—:f+a1(%+h(1))+---+aK(:\5+h(K))

+3° am(ﬁ+h(x)+a(m—x)).
m=K+1

By algebraic calculation, we have

h(1) = ah(l) +agh(2)+---+ag_1h(K - 1) + i anh(K)
m=K

(1) +% +a Y (m—K)an.

Similarly we obtain

h(i) = aoh(i—1)+ah(d) +- - +axih(K - 1)+ Y amh(K)
m=K-i+1
(2) +22 4, > (m-K+i-la, 1<i<K
H m=K—i+1

Let column vector H = (h(1),k(2), -+ ,h(K))T,B = (b1, b2, -+ ,bk)7,
where

A 00
b =22+« Z (m—=K+i—1)anm,
H m=K-—i+1

and define K x K matrix A as follows
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ao a"l a2 DY DS LRI a.K—Z

0 ag a aK-3 a;
A = j=K-2
=
0 0 O ag E a;
j=2

\0 0 0 -+ -+ --- ag Zaj

Then (2) can be rewritten in matrix form as
H = AH + B,

ie.,
(I - A)H =B.

By algebraic manipulation, we easily see that det(] — A) = af # 0.
Therefore by Cramer’s Rule the above matrix equation have unique so-
lution, in particular,

h(1) = a;‘-:?—;(% = agKdet(A),

where the K x K matrix A is equal to the matrix I — A except for the
first column replaced by B
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i=K
b2 1_0'1 —as —ag_5 — Z a;
j=£(o~1
. b3 —ag l_al cee e —ag_3 — Z a;
A = j=K-2
bK_1 0 0 e —Qo 1—01 —iaj
j=2
\ by 0 0 —ao 1—Zajj
ji=1

LEMMA 1. (Mustafa criterion)[11] For an irreducible and aperiodic
Markov chain {Z,} with state space S, a sufficient condition for ergod-
icity is the existence of a non-negative function f(s), s € S and e > 0
such that the mean drift ©s = E[f(Zp+1) — f(Zs) | Zn = 8] < o0 for all
s € 8§ and r, < —¢ for all s € S except perhaps a finite number.

LEMMA 2. [16] Let {Z,} be a irreducible Markov chain with count-
able state space S. If there exists a non-constant function f : S — [0, 00)
such that

(a) E{f(Zpn1)— f(Z,) | Z, =1} >0 forall i€,
(b) there is an M > 0 such that E{| f(Zn41) — f(Zn) || Zn =4} <M

foralli € S,
then {Z,} is not ergodic.

THEOREM 1. The imbedded Markov chain {Z, = (X,,Y,) | n =
1,2,---} is ergodic if and only if h(1) = ag® det(4) < 1.

Proof. Suppose that ag® det(/i) < 1. To apply Lemma 1, we choose
test function f(z,7) = h(%) + h(1)j. By conditioning the number of type
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I arrivals during one service time, we have for i > 1,5 > 0,

E[h(Xn+1) | (Xn,Yn) = (i’ .7)]

o

= aoh(i — 1) + a1h(i) + - + ak-h(K = 1)+ > amh(K)
m=K-—-i+1
N A2 - .
=h(i)—— —a (m—K+1i—1)am,
K m=K-—i+1

E[Y,H_] | (Xn)Yn) = (7"])]

=j+2‘-2—+a i (m—K+1i—1)an.
K m=K~—i+1
Therefore
Elf(Zni1) = f(Zn) | 2, = (3, 7))
= E[h(Xn+1) + h(1)Yos1 | (Xn, Ya) = (4,9)] — h(2) — A(1)7

= (h(1) — 1)i2~ + (h(1) = 1 f: (m—K+i—1)ap
H m=K—i+1
A2

< (h() = 1)

Similarly, for i =0, 7> 1

=ath(1)+---+ag_1h(K —1) + i amh(K)

m=K

=h(1)—%—a Z(m—K)am,

v {_7 -1+ % + asum>>_p(m — K)am}
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Therefore

E[f(Zni1) = £(Z2) | Zo = (0, 5)]
= E[h(Xnt1) + h(1)Yora | Zo = (0,5)] = h(1)7

= (h(1) - 1)(% ra Y (m-K)am) + k(1)
m=K+1

A
A+ gv

< (h(1) - 1)%2— + h(l)fﬁ — (h(1) - 1)% as j — oo.

Since h(1) < 1, this implies that there exists an N such that for j > N,
E(f(Zus1) = f(Zn) | Zn = (5,§)] < —e = ~15@% By Mustafa
criterion the Markov chain is ergodic.
Suppose k(1) > 1. We easily obtain, for all i > 0,
. A
E{f(Zn1) = £(Zu) | Zn = (3,5)} 2 (h(1) - 1) 2 0,

U
B{| (Zusr) — £(Za) || Za = (i, 1)} < (h(1) + 1)3 <ol

By Lemma 2, {Z,.} is not ergodic. a

3. Queue size distribution in steady state

If the distribution of service time is not exponential, then the stochas-
tic process {(N,y(t), N.(t));t > 0} is not Markov process. We introduce
random variables X (t) and I(t), where X (t) is the elapsed service time
of the call in service at time ¢ and I(t) is the server state, I(t) = 0 if the
server is idle at time ¢ and I(¢) = 1 otherwise. Then

{(Ng(8), No(8), X (2), I());t = 0}
is Markov process with state space
{G,4,z,1);i=0,1,--- |K,j=0,1,--- ,0< 2 < 00,l =0,1}.
We define the probabilities,
gi(t) = P{Ny(t) = 0, No(t) = 5,I(t) = 0}
pij(t,z)dr = P{N,(t) =i, N.(t) =j,z < X(t) <z +dz,I(t) = 1}
i=01,--- K.
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We assume that the system is ergodic. Let us define steady state
probabilities

g; = lim g¢;(t), pij(z)dr = Jim pi;(t, z)dz
—$00

t—oo

and define b(z) = 11_3 ;58).

By the procedure of supplementary variable method, we easily obtain
the following system equations in the steady state:

3) (A+jv)g = /Ooo po,j(z)b(z)dz,

(4) P;J(CE) = —(A+b(z))pi;(z) + Api-1,5(x) + Aepij-1(z)
0<i< K —1,
(5) Prj() = —(ho+ i +b(z))pK,i(2) + AipK-1,i(2)
+(Az2 + a)pk j-1(x),
© i) = g+l Dmat [ pueiads,
(7) pi;(0) = /oo Piv1,;{z)b(z)dz for 1<i<K-1
0
pK,j(O) = 0,

and the normalization condition
o K oo oo
DY REFOTED SURSE
j=0 i=0 Y0 =0

where A = A} + Ao and p; _1(z) = p_1,;(z) = 0 for any fixed z.
To solve equations (3)~(7), we define the partial generating functions
for a complex number z with | 2 |[< 1,

Qz) = > ¢
7=0
P(z,3) = Y pis(@)?
§=0

P(z) = i {/Ooopi,j(x)dx} P 0<i<K

J=0
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and let

K K
P(z2) =Y P(zz),  P()=3 P(2).
=0 =0

Note that Q(z) and P;(z) are the partial generating function of the
number of calls in the retrial group in steady state when the server
is idle and when the server is busy with 7 calls in the priority queue,
respectively.

Multiplying both side of (3)~(7) by 27 respectively and summing over
7, we obtain the following basic equations after some algebraic calcula-
tions:

®) 0 = —(AQ(2) +v2Q(2) + /0 " Po(z, 0)b(z)dz,

(9) % = —(A = Aoz + b)) P2, z) + M Py (2, 2),
0<i<K-—1,

a0 2B (34 ar) (1= 2) + b)) Ptz

+)\1PK 1(2 .’II)
(1) Py(%0) = AQ(z)+vQ(z /Pl(z 2)b(z)

(12) P(2,0) = / P, 1(z, 2)b(z)dz 1<i<K-1,
PK(Z,O) = 0,

and normalization condition

(13) > P2) |t +Q(2) =1
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By recursively solving the equations (9) and (10), we obtain

(14) Pi(z,2) = {Z '(A}—!x)jpi—j(z,())}(1—B(x))e“(’\"\2’)m,

J=0

0<i< K-,
K-1 .

) = {Z(l —a+az) " Pryi(2,0)

=0

X 1 — i e—Al(l—a+az)m (Al(l -+ az)w)_(i_j)

= (i = 4)!
(15) +PK(27 0)}(1 — B(m))e—(’\2+’\10)(l—z)z'

For simplicity of notation, let

Bi(z) = /000 (Alm)j(l — B(z))e"*2e7dy 0<i< K —1,

J!
(z) = /0 e (i @0=2(1 — B())ds = 1—(22(12;:)13)95>z))'

Integrating eqs.(14) and (15) from z = 0 to z = 0o, we obtain

(16)  P() = Y A(Ps(s0)  0<i<K-1,
(17) Pg(z) = > (1-a+ae2) ™ Px_1i(2,0)
i=0

x {’yo(z) -y (-a+ az)jﬁj(z)} :

=0
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Now we need to find P;(z,0). Substituting egs.(14) and (15) into egs.(8),
(11) and (12), we obtain

O
19) A0 = a@R0- At
2—1
(20) P(z,0) = ) e jPi(2,0) 2<i< K -1,
=0
Py(2,0) = 0,
where
1+ M6 (A — Ao2) o
o= _ PO teeh
—Q)BI0 ~ X2) if > 2
A6 (h — Aaz) =<

LEMMA 3. Let y;(2) be the coefficient of n° in Taylor series expansion
of
1

b*(A— ez — i) — 7
Then we have that fori =0,1,--- , K — 1,

(21) P(2,0) = (wi(2) — %i-1(2))AQ(2) + (25:(2) — 3:-1(2))v Q' (2).

Proof. It is known (Choi and Park {2]) that for each z, | z |< 1,
b*(A = A2z — A\;m) — n = 7 has no solution in a neighborhood of n = 0.
So yi(2),i = 0,1, - are well defined for | z |< 1.

yi(z)’s satisfy the following recurrence relation:

) Iz'SL i=0,1,---.

i-1
1 ,

y-1(2) =0, yo(2) = 0= gz)’ yi(z) = ;c,--j(z)yj(z), =12,

Using this relation and eqs.(18)~(20), we easily obtain for i =0,1,- .-,

K -1,

Pi(2,0) = (4i(2) — 4i-1(2))AQ(2) + (20:(2) — yia (D)@' (2). O
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Substituting (21) into egs.(16) and (17) yields the following equations:
P(z) = Y Bij(2)P;(2,0)
=0
(22) = {Z Bi-i(2)(y;(2) — yj—1(2))} AQ(2)
=0

+ {Zﬁi—j(z)(zyj(z) - yj-1(z))} vQ'(2),

0<i<K-1

(23)  Px(e) = D(2)AQ(z) + D(=w@ (),
where
@) D) = Y(1-eatan) (o) -pn()
= K—-1-—2 )
X {'yo(z) — Z (1-a+ az)Jﬂj(z)} ,
(25)  Di(s) = (- ot ar) " (ap(z)—yia())

-
il
=}

K—-1-:
x470(z) = Y (1——a+az)j,8j(z)}.

=0

It remains to find Q(z). Integrating egs.(9) and (10) from z = 0 to
T = 00, We obtain

(26) /0 T Plna)b(z)dz = P(2,0) — (A= Aa2)P(2) + MPrs(2),
0<i<K~1,

(27) /Ooo Px(z,z)b(z)dz = —(Ao+ ali)(l — 2)Px(2) + M\ Px_1(2).
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Substituting eqs.(26), (27) into (8), (11) and (12), we obtain
(28) 0 = —(AQ(2) +v2Q'(2)) + Po(2,0) — (A = Xez) Po(2),
(29) R(2,0) = 2Q(2)+vzQ'(2) + Pi(2,0)
-‘()\ - AgZ)Pl(Z) -+ )\1P0(Z),
(30)  Pi(2,0) = Pua(20) — (A = 22) Pia(2) + M Pi(2)
1<i<K-2,

(31)PK_1(Z, 0) = PK(Z, 0) b ()\2 + a)\l)(l - Z)PK(Z) + )\1PK_1(Z).
Adding up (28) ~(31), we obtain

v (2)(1 = 2) = Xo(1 — 2) P(2) + ad Px(2)(1 — 2),

vQ'(2) = M P(z) + aX Pk(z), | z |< 1.

By the continuity of analytic functions, we have

I

(32) vQ'(2) = M\ P(2) + aA Px(z), |z |< 1.
Substituting eqs.(22) and (23) into (32), we obtain

K-1 1
{ 1= 33" XBij(2)(2yi(2) = yi-1(2)) — (o + aA1>bK(z)} vQ'(2)

=0 j=0

K-1 1
= {Z Y 2Bii(2)(yi(2) — y5-1(2)) + (o + amDK(z)} 2Q(2).

i=0 j=0

The general solution of this differential equation is

(33)Q(2) = Cexp {_é ' BEk(s) + (A2 + a\)Dk(s) ds} ,

vJ: 1—Ex(s) — (Mg + ali)Dk(s)

where
. K-1 1
(34) Ex(z) = Aofi-i(2) (wi(2) — yj-1(2)),
=0 =
. K-1 1
(35) Ex(z) = Aofi-j(2)(2y;(2) — yi-1(2))-

1

Jj=0

Il
o
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To find C, summing egs.(9) and (10) over ¢, and letting z = 1, we can

solve P(1,z) as
P(1,z) = P(1,0)(1 — B(x)).
Integrating above equation from z = 0 to x = 0o, we obtain
P(1) = P(1,0)pt

Since P(1) = P{the server is busy} = 1 — P{idle} = 1 — Q(1), we have
(36) P(L,0) = (1-QM)u.
Set z =1 in egs. (28)~(31) and summing them, we have
(37) Py(1,0) = MBy(1)+ Q1) +vQ'(1),

(38)  P(L0) = AP() 1<i<K -1,

(39) P(1,0) = MP(1)+ Q1) +vQ'(1) — Pk (1).
Similarly letting z = 1 in (21) and summing them over ¢, we obtain
(40) P(L,0) = yxoa(DOQ() +vQ(1)).

Also letting z = 1 in (32), we obtain

(41) . vQ'(1) = XP(1)+ alPk(1).

Using egs.(36), (39), (40) and (41), we can calculate C as

B _l—a+{a—ap - p2)yx-1(1)
(42) C=01)= l—a+(a+(1—a)p)yx-1(1)’

A
where p; = 7‘1,p2 = 7}

Thus we have obtained the following results.

THEOREM 2. (a) In steady state, when the server is idle, the partial
generating function Q(z) of the number of calls in the retrial group is
given by

Q(z) = E[z™;1=0]
l1—a+(a—apr —p2)yk-1(1)
1—a+(a+(1—a) p1)yx—1(1)

)
A 1 (S) + ()\2 + a/\l)DK( )
(43) X exp {—;/z = Bn(s) — O + ah) Drls )ds} :
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(b) The partial generating function P;(z) of the number of calls in the
retrial group when the server is busy with i calls in the priority queue in
steady state is given by

(1) P(z) = E[zM; N =14, =1]

= AQ(2) Z 6i—j(2){(yj(2) — yj-1(2))

() (#3(2) = 4i1(2)) (Bx(2) + (g + @) Dc(2) }
1~ Ex(2) = (A2 + a)1) D (2) ’
0<i<K-1,
(2)Px(z) = E[Z";N,=K,I=1]
Dk(2)(Ex(2) + (A + a)) Dk (2))
43) Q=) { 1 — Ex(z) — (A2 + a\1) Dk (2) * DK(Z)} ’

where Dk (z), Dx(2), Ex(z) and Ex(z) are given by (24), (25), (34) and
(35) respectively.

REMARK 1. As we expected, we will show that the probability that
the server is idle converges to 1—p as K — 0o0. Note that the probability
that the server is idle is equal to 1 — p when K = oo (Choi and Park[2]).
The function Y oop vi(1)7* = (b"(h——lz\m)—n) is analytic in |  |< 1, by the
Abelian theorem, we have

. 1-7 -1
~1(1) = lim =(1- .
Am (1) = Jim o = (1= )

Therefore we conclude that

P{server is idle}
—a+ (a—api = p2)yx-1(1)
O T T T )
L l-at(@a—ap—p)(1-p)7"
1—a+(a+(1—a)p1)(1—p1) 1
REMARK 2. For a special case of A; = 0, our model is reduced to
the classical retrial queueing system (Falin[11}).

=1-p, a K— o
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In this case

Bo(z) = /oo(l — B(z))e -2dy
0
1= (A - A2z) _
B )\2(1 — z) - 70(2))
Alz) =0, i>1,
yi(2) = ("2 — Agz)) (D l<i<K—1

So we have
Dk(z) = Dxk(z) =0,

K-1 *(Ao — Aoz
Ex(z) = ,\ng(z)z(yi(z)—yi_l(z))-——(11__2;),,.(262 -/\-2)\)22)’

i=0

K-1 (o — Ao2) — 2
EK(Z) = Afo(2) Z(zy,-(z) —yi-1(2)) =1- (11)_(:\)21;*1(?,2\2)— Aoz)

=0

Therefore
Q(z) = E[";I1=0]
A 1 1—- b*()\g - /\23)
- (1 - p2)emp{_;/z b*(Az _ )\23) — SdS},
1-— b*()\g - )\22)
b0 = daz) — 20
These agree with equations (1.23) and (1.25) in Falin [11].

P(z) = E[Z";I1=1]

REMARK 3. When o = 0, our model is identical to the M/G/1
retrial queueing system with two types of calls and finite capacity[6].
In this case

vQ'(z2) = XP(2),

folz) = Ty
Ew(2) + Ao Dg(2) yr-1(2)(1 - _b*z(/\Q ~ %)

Bi(2) + XoDylz) = LTe= 22 {yx_l(z>—(1—z)2yi<z>}-
=0

z
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Therefore

Q(z) = E[ZM;1=0)
1= poyx_ A Lyk_1(8)(1 = b* (A — Ae5))
T o1+ plyxgi exp{ v /z D(s) ds} ’
Po(z) = E[z";N,=0,I=1]
AL = 2)(1 = " (A = A22)) B(2)Q(2)
(A — A2)b* (A — A22)) D(2) ’

where
K-1
D(z) = (1-2)— (1=~ X22)yk-1(2) —(1—2) > w(2)],
=0

B() = 1+(1- 0 = %2)(3 5(2) - yxr(2)).
=0

These agree with equations (3.14), (3.16a) in Choi and K. B. Choi [6].

4. System performance measures and numerical examples

(1) The probability P, that type I calls are blocked in priority queue
and leave the system:

B = (1-a)Pk(1)
C A 1= poyr-a(1)
M1+ (o + 7% )yx—1(1)

-

= (1
(2) The system throughput P,:

L B pyk-1(1)
P, =1 Q(l) T l-a+ (a+ (1 — a)p1)yK—1(1)'




The My, M3/G/1/K retrial queueing systems with priority 709

(3) Mean number E[N,] of calls in the priority queue :

K-1 K-1

Zm(n = /\ll iPy(1,0)
=1 . ;{:__11
= 3 2 (1) — 5 (D)ARD) +vQ' (1))
K-1
= %ﬁgl—) Zl(yi(l) — yi-1(1))
=1
_ i z; i(gi(1) — 3-1(1))
Ml—a+(a+(1-a)p)yk-1(1)’
K
E[N, = Zlﬂ(l)
b
= Y iP(1)+ KPx(1)

A (K + Kpyxa(1) - 2K w())
Al—oa+(a+(1-a)p)yk—1(1)

(4) Mean waiting time of type I calls in the priority queue W,
By Little’s theorem

Wp — E [N '1] .
M(1— Px(1))

Now we give numerical examples on the some performance measures.
Assume that the mean service time is 1 and the retrial rate » = 0.3. In
Figure 2, the service time distribution was taken as hyper-exponential
with parameter (1/3,2/3), in Figure 3 and Figure 4, we consider the
service time distribution as exponential exp(1).

Figure 2 displays the loss probability of type I calls for two cases
(o = 0 and a = 0.3) versus the capacity K and arrival rate of type I
calls under a fixed A\, = 0.1. For each case, the loss probability decreases
as the capacity K increases and the arrival rate of type I calls decreases.

Figure 3 displays the loss probability of type I calls as functions of
the arrival rate A, under the parameters: K = 8 and A\; = 0.4);. This
figure shows that the loss probability increases as the arrival rate of type
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F1GURE 2. Loss probability of type I calls:
Hezp(1/3,2/3) service time, v = 0.3, )2 = 0.1
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FIGURE 3. Loss probability of type I calls: exp(1) service
time, K = 8, )\1 = 04)\2
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4 T T T . . . :
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apha=o.3 -----

>l alpha=0.6 ----- B
alpha=0.9 ---—

3 ] —

[}
E
CE” 25
.§
c 2
[}
Q
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15
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05 L . 1 1 i i )
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FIGURE 4. Mean waiting time of type I calls in priority
queue: exp(l) service time, K = 8, Ay = 0.2,

II calls increases, and decreases as the probability a of entering to retrial
group increases.

Figure 4 displays the mean waiting time of type I calls in priority
queue as functions of the arrival rate A\, under the parameters: K = 8
and A; = 0.2);. This figure, shows that the mean waiting time of type
I calls increases as the arrival rate of type I calls increases, but has no a
great difference according to the probability a.
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