• Title/Summary/Keyword: Resonance Frequency Analysis

Search Result 984, Processing Time 0.028 seconds

Study on the Resonance in Trackbed of High-Speed Railway Considering Ground Condition (지반조건에 따른 고속철도 토공노반의 공진에 관한 연구)

  • Lee, Il-Wha;Hwang, Seon-Keun;Choi, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1320-1325
    • /
    • 2006
  • When the train running on the high-speed track, there is a speed band which track distortion is unusually increased according to the condition of track and roadbed. This speed is called critical velocity and physical parameter values are increased greatly. These phenomenon happened as high-speed train were developed, studied regularly through TGV 100 running test in France. As research result until now, the main reason is soft roadbed's bearing capacity. Wave propagation and track support capacity is varied by the ground characteristics. This paper achieved theoretical examination about resonance band(speed and frequency) that occurred in roadbed on the base rock in point of geotechnical engineering. The examination of resonance divides with ground response analysis, critical band analysis by the shear wave velocity of roadbed and train critical speed through the ground stratum.

  • PDF

A Study on the Wireless Power Transfer System using Magnetic Resonance at the 1[MHz] Frequency Band (1[MHz] 대역의 자계 공명을 이용한 무선 전력 전송 장치에 관한 연구)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • In this paper, the wireless power transfer system using the magnetic resonance was designed, analyzed by circuit analysis methode and the calculated transfer function was compared with the measured one. The self-resonant coil was made up of the commonly used capacitor which had the lumped capacitance and it enabled the stable magnetic resonance not to be affected by the circumstance. The transmission efficiency of this system was 70[%] at the 15[cm] between the transmission and receiving coil and the measured transfer function was similar to the calculated one, which means the circuit analysis methode is valid in this system. When the intermediate coils were added between the transmission and receiving coil, the transmission efficiency was increased, which produced the increase of transfer distance. In the case of the five intermediate coils adding, the 35[%] transmission efficiency was achived at the 90[cm] distance.

Steady-State Analysis of Reactance Oscillators having Multiple Oscillations

  • Matsuo, K.;Matsuda, T.;Nishio, Y.;Yamagami, Y.;Ushida, A.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.203-206
    • /
    • 2000
  • In this paper, we discuss an efficient steady-state analysis of reactance oscillators having multiple oscillations. Our oscillator is consisted of the Cauer or Foster reactance sub-circuit and a negative resistor such as tunnel diode. The reactance circuit has many resonance and antiresonance points on the frequency response curve. Such a circuit having the specified resonance and anti-resonance points can be easily synthesized with the fundamental circuit theory. In this case, the multiple oscillations may occur near at the anti-resonance points. We have developed a user friendly simulator for getting the exact steady state responses using the SPICE.

  • PDF

A Study on The Driving Characteristics of Ultrasonic Linear Motor Using Symmetric And Anti-Symmetirc Resonance Modes (대칭-비대칭 공진모드를 이용한 초음파 리니어 모터의 구동특성 연구)

  • Choi, Myeong-Il;Bae, Seok-Myeong;Park, Tae-Gone
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1962-1966
    • /
    • 2007
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric resonance modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer. The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

Global Bifurcations and Chaos Via Breaking of KAM Tori of an Harmonically Excited Imperfect Circular Plate

  • Samoylenko, S.B.;Lee, W.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The renormalization-group technique for KAM tori is used to obtain the criteria for large-scale stochasticity in the system.

  • PDF

High frequency measurement and characterization of ACF flip chip interconnects

  • 권운성;임명진;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.146-150
    • /
    • 2001
  • Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. S-parameters of on-chip and substrate were separately measured in the frequency range of 200 MHz to 20 GHz using a microwave network analyzer HP8510 and cascade probe. And the cascade transmission matrix conversion was performed. The same measurements and conversion techniques were conducted on the assembled test chip and substrate at the same frequency range. Then impedance values in ACF flip-chip interconnection were extracted from cascade transmission matrix. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of SiO$_2$filler to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. High frequency behavior of metal Au stud bumps was investigated. The resonance frequency of the metal stud bump interconnects is higher than that of ACF flip-chip interconnects and is not observed at the microwave frequency band. The extracted model parameters of adhesive flip chip interconnects were analyzed with the considerations of the characteristics of material and the design guideline of ACA flip chip for high frequency applications was provided.

  • PDF

Evaluation of the Dynamic Modulus by using the Impact Resonance Testing Method (비파괴충격파 시험법을 이용한 동탄성계수 평가)

  • Kim, Dowan;Jang, ByungKwan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : The dynamic modulus for a specimen can be determined by using either the non-destructed or destructed testing method. The Impact Resonance Testing (IRT) is the one of the non-destructed testing methods. The MTS has proved the source credibility and has the disadvantages which indicate the expensive equipment to operate and need a lot of manpower to manufacture the specimens because of the low repeatability with an experiment. To overcome these shortcomings from MTS, the objective of this paper is to compare the dynamic modulus obtained from IRT with MTS result and prove the source credibility. METHODS : The dynamic modulus obtained from IRT could be determined by using the Resonance Frequency (RF) from the Frequency Response Function (FRF) that derived from the Fourier Transform based on the Frequency Analysis of the Digital Signal Processing (DSP)(S. O. Oyadigi; 1985). The RF values are verified from the Coherence Function (CF). To estimate the error, the Root Mean Squared Error (RMSE) method could be used. RESULTS : The dynamic modulus data obtained from IRT have the maximum error of 8%, and RMSE of 2,000MPa compared to the dynamic modulus measured by the Dynamic Modulus Testing (DMT) of MTS testing machine. CONCLUSIONS : The IRT testing method needs the prediction model of the dynamic modulus for a Linear Visco-Elastic (LVE) specimen to improve the suitability.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

An Experimental and Numerical Study on the Fracture Behavior of Air conditioner Impellers (에어컨 임펠러의 파손 거동에 관한 실험 및 수치적 연구)

  • Koh, Byung-Kab;Lee, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3533-3539
    • /
    • 2009
  • An air conditioner impeller has been used to suck the warm air and to blow the chilled air by the centrifugal force induced from the rotation of it. To check the possibility of the fracture due to resonance, both numerical and experimental approach was carried out. For the structural analysis, the commercial code ANSYS based on the Finite Element Method was employed. The possibility of the fracture is the resonance between the natural frequency of impeller and characteristic frequency due to the aerodynamic forces. Experiment was carried out to see the natural frequency and numerical analysis based on the Vortex Element Method is performed to get the characteristic frequency. Comparing the natural frequencies that are calculated as described, we believe that resonance occurs.

A comparative study on the initial stability of different implants placed above the bone level using resonance frequency analysis

  • Kang, In-Ho;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.190-195
    • /
    • 2011
  • PURPOSE. This study evaluated the initial stability of different implants placed above the bone level in different types of bone. MATERIALS AND METHODS. As described by Lekholm and Zarb, cortical layers of bovine bone specimens were trimmed to a thickness of 2 mm, 1 mm or totally removed to reproduce bone types II, III, and IV respectively. Three Implant system (Br${\aa}$nemark System$^{(R)}$ Mk III TiUnite$^{TM}$, Straumann Standard Implant SLA$^{(R)}$, and Astra Tech Microthread$^{TM}$-OsseoSpeed$^{TM}$) were tested. Control group implants were placed in level with the bone, while test group implants were placed 1, 2, 3, and 4 mm above the bone level. Initial stability was evaluated by resonance frequency analysis. Data was statistically analyzed by one-way analysis of variance in confidence level of 95%. The effective implant length and the Implant Stability Quotient (ISQ) were compared using simple linear regression analysis. RESULTS. In the control group, there was a significant difference in the ISQ values of the 3 implants in bone types III and IV (P<.05). The ISQ values of each implant decreased with increased effective implant length in all types of bone. In type II bone, the decrease in ISQ value per 1-mm increase in effective implant length of the Br${\aa}$nemark and Astra implants was less than that of the Straumann implant. In bone types III and IV, this value in the Astra implant was less than that in the other 2 implants. CONCLUSION. The initial stability was much affected by the implant design in bone types III, IV and the implant design such as the short pitch interval was beneficial to the initial stability of implants placed above the bone level.