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Global Bifurcations and Chaos Via Breaking of KAM Tori of an Harmonically
' Excited Imperfect Circular Plate.
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ABSTRACT

Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal
resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural
frequencies, is considered. The damping force is not included in the analysis. The renormalization-group technique for
KAM tori is used to obtain the criteria for large-scale stochasticity in the system.

1. Introduction

Dynamical systems having two of their linear natural
exhibit
interesting phenomena when nonlinear terms are taken into

frequencies nearly equal complicated and
account. Plates may be one of the systems. The dynamics
of plates related with non-linear modal interactions was

widely described in terms of local bifurcations by Sridhar,

Mook and A.H. Nayfeh {1], Yang and Sethna. [2]. Lee et al.

[3, 4] studied modal interactions of a circular plate and of
the plate on an elastic foundation [5, 6] for which intemnal
resonance occurs. Global bifurcations have been examined
for a wide class of problems. Feng and Sethna {7] studied
global bifurcations of a Hamiltonian system with a certain
symmetry in terms of breaking of heteroclinic orbits. Yeo
and Lee [8] studied global bifurcations in modal
interactions of a circular plate using a method developed by
Wiggins and Kovadi¢ [9]. They investigated homoclinic
orbit created in a resonance resulting from perturbation.
Lee and Samoylenko [10] extended Yeo and Lee’s work
[8] to investigate breaking of heteroclinic orbits created in a
non-resonance case for undamped system by use of
Melnikov method [11].

One of the key mechanisms of the transition to

chaos in Hamiltonian systems is the breaking of invariant
tori [12, 13]. In this work chaos due to breaking of KAM
tori is considered. The renormalization-group analysis
[14,15] is used to study the appearance of large-scale
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stochasticity in modal interactions of a circular plate.

2. Governing equations

The equations governing the free, undamped
oscillations of non-uniform circular plates were derived by
Efstathiades [16]. Yeo and Lee [8)] simplified these
equations to fit the special case of non-uniform circular
plate, for which forcing terms were added. .

Assume that transverse displacement of the plate could
be expressed as a combination of two linearized modes.
Neglecting damping terms we reduce equations obtained by

Yeo and Lee as follows:

¥+ @7 x, + eyl x,(x} + x})= gy cos At, i=1,2,
where X; are amplitudes of normal modes, @, are
normal frequencies, ¥ plays a role of the parameter of
nonlinearity, [ are amplitudes of excitation and & isa
small parameter.

We consider external resonance @, = A . In order to
consider internal resonance due to imperfection, @, = @,
we introduce intemnal detuning parameter S as follows:
w,=w,+&f.

By use of the method of multiple scales [17] we get
solvability conditions

Z'\=ileF, +3yAZ}Z] 2

+HAZ,Z,Z, +AZIZ 2]
Z! =i[eF, + PZ, +3/AZ}Z; 12

Y AZ,ZZ +yAZIZ 12).

(la)
(16)



Here F,=—u;/4eA are forcing terms and Z; is a
slow-time amplitude:

%0 = Z,(T;)e™ 42;'(\T})e-"”°, j=12,
T, =", k=0,

Asterisk and prime denote, respectively, complex conjugate
and a differentiation with respect to slow time.

. Assuming  harmonic  amplitudes ' Z ;o as

Z,=|2a;(sing, +icos@,), and making variable

change with rescaling: ’
P| = al}/}“a Q] = ¢1 _¢2
B-FB=ayl, Q=¢-7n/2

F=-fiNr, F=fni

we transform the system (1) to a Hamiltonian form with.

Hamiltonian
H=Ho+gH|:ﬁ(P]—Pz)
~(I+cos2Q)R(R-P)-3R /2 @

£ \/Z_Esm(Q,+Q2)+ 2(1_)2_13) cosQ, |.

In order to have real-valued function H we must require
O0<PB <P . In the absence of perturbation i..
& =0, system (2) is a completely integrable Hamiltonian
system with P2 = P20 as a conserved quantity. For
—P,/2<f<PB,/2 the unperturbed system has
heteroclinic orbits [10].

3. Invariant Tori and Renormalization Operator.

In order to investigate invariant tori of system {1 we
construct the action-angle coordinates. Existence of
heteroclinic orbits does not allow making a global action-
angle transformation. It is, however, possible to construct
the action-angle transformation locally.. The actions are
given by: - .
L =1(Fy.p.h), I,=Fh, €
where A is an energy level of the system H, .
Expression [, (P, f,h) is given in an integral form.
The domain in coordinates (11,12) , for which local
transformation (3) is valid could bé determined by relation
0< B, < P, It gives the critical values of energy A :
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h=Holyyr by = H"‘Pﬁl’zo’

which determine the range of possible energy values
h<h<h, if B<0
h<h<h, if B>0.

This range gives conditions on possible values of 1. , for
given value of energy h:

o< <™, @

where upper and lower boundaries of [ , are functions of

BB, and h.

The phase space of the unperturbed system (2) is
foliated by 2-dimensional invariant tori. In action-angle
coordinates each torus is specified by two frequencies:
w, =0h/0l,, @, =0h/0l,. The ratio W =,/ @,
is said to be the winding number of a torus. We will refer to
an invariant torus of rational winding number W = p/q
as resonant invariant torus that corresponds to a resonance
denoted by a pair -(p,g). An’ invariant torus of irrational
winding number is said to be non-resonant, or irrational.
Actions (3) allow us to calculate winding ratio of a given
invariant torus.

A rational invariant torus is foliated by an infinite
number of periodic orbits. The Poincaré -Birkhoff theorem
[18] states that only a finite number of them survive under
perturbation. Half of these periodic orbits are elliptic, and
the other half hyperbolic. In the neighborhood of the stable
and unstable manifold of hyperbolic orbits chaotic motion
could be observed. We call this phenomenon breaking of

resonant torus.

The behavior of irrational invariant tori can be studied
using the Kolmogorov-Amold-Moser theorem [12]. This
theorem states that for a'near-integrable nondegenerate
Hamiltonian §ystem under small perturbation irrational
invariant tori with Diophantine frequency vectors do not
decay but are only deformed. We refer to the tori from the
KAM theorem as KAM tori. Under sufficient perturbation,
however, KAM tori are also destroyed. Destruction of all
KAM tori in a certain region of phase space lead to large-
scale stochasticity in this region also called global chaos
[13, 15]. .

~Study of Poincaré sections of the system flow shows
resonant tori, which break first under perturbation. We
refer to these tori and corresponding resonances as main

resonant_ tori and main resonances respectively. For



,B >0 two main resonances are (2, 1) and (3, 1).

Corresponding resonant tori have winding numbers 2 and 3.

For ﬂ < main resonances are (0, —1) and (1, -1). Main
resonant tori that correspond to these resonances have
winding numbers 0 and -1.

Positions of main resonant tori depend. on value of
parameters f3, on and energy /. For some values of
parameters main resonant tori may lie outside of ranges
given by inequality (4). Solving the equations on the
winding number W(]Zmin)=w and W(Izmx)=w
for w=2,3,0 and -1 we obtain regions in parameter
space ([, P,;) , where main resonant tori exist.

Using the method suggested by Pronine [15] we find
the winding number VVN of the KAM torus which will be
the last invariant torus destroyed under perturbation
between two given resonant tori, For 3 < 0 the last KAM
torus has W, =—g and for >0 W _=2+g,
where g = (\/g—l)/Z is the golden mean. Any
irrational number has a unique representation as an infinite
continued fraction {19]. Truncation of a continued fraction
gives a rational approximation of the irrational number.
Winding numbers of the main resonant tori correspond to
first two rational approximants of irrational winding
number W;r.

In order to get a threshold for destruction of the last
KAM torus between two main resonances M and P a
renormalization operator was constructed. It utilizes the

Hamiltonian in the normal form:
H,=ol +I,+al} +2blL],

. )]
+cl} + M cos6, + Pcosé,

with 0<w<1l, a>0 and a’+b*+c*=1.
System (2) could be approximated by the normal form (5).
w,a,b
Hamiltonian [/ o » the energy h and the considered
KAM Coefficients M and P
harmonics of H , which are resonant to frequencies of tori

The coefficients and ¢ depend on the

torus. represent

correspondingto M and P .
The threshold to
calculated in parameter space (3, P,;). Values of the

large-scale stochasticity was
small paramefer & and excitation amplitudes f; and
f, were fixed (£ =0.05, f, = f, =1.0). The critical
values of parameters for which the last KAM torus is
destroyed were found by use of bisection method along
lines on/ ﬂ = const . The order of accuracy of the
bisection method was 10™*. Computations were done for
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five values of energy between hl and h2 The union of
chaotic regions in parameter space obtained for the range of
energies gives the region where large-scale stochasticity
may be observed for some value of energy, which is
available for the system.

The picture of global bifurcations of considered system
is presented on Fig 1. In region 1 the system has main
resonances (0, —1) and (1,~1). Breaking of corresponding
resonant tori under perturbation lead to stochastic layers. In
the subregion la stochastic layers formed by two main
resonant tori merge and large-scale stochasticity occurs. On
the boundary between regions 1 and 1a the last KAM torus
with

winding number -—-g is

0.8

0.6

P2

0.4

0.2

Fig. 1. The global bifurcation diagram.

destroyed. In region 2 the system has main resonant tori
corresponding to resonances (2, 1) and (3, 1). Under
perturbation this tori break and form stochastic layers.
There is a subregion denoted as 2a where large-scale
stochasticity takes place. On the boundary between regions
2 and 2a the last KAM torus with winding number 2+ g
is destroyed. In regions 3, 4 and 5 system has no
resonances (2, 1), (3, 1), (0, —1), or (1,-1). Nevertheless,
chaos may appear in these regions due to breaking of other
resonant tori. These tori correspond to resonances of
irrational tori, which are more stable then KAM tori
described above. Therefore, for considered excitation
intensity the area of stochastic layers in regions 3,4 and 5
will be small, compared to area of stochastic layers
appearing in regions 1 and 2.

In order to illustrate the meaning of a boundary
between regions 1-la and 2-2a a Poincaré map was
calculated for point marked by a circle in Fig. 1. This map
is presented in Fig. 2. Here we see the last KAM-torus with
winding ratio 2+ g surrounded by stochastic layers and
destroyed rational tori.
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Fig. 2. The last KAM torus with winding ratio 2+ g.
(B=12163, P, =03314,6=005, f = f, =1.)
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