Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.3.409

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load  

Huang, Qinghua (School of Intelligent Manufacturing,Zhejiang Guangsha Vocational and Technical University of Construction)
Yu, Xinping (School of Intelligent Manufacturing,Zhejiang Guangsha Vocational and Technical University of Construction)
Lv, Jun (School of Intelligent Manufacturing,Zhejiang Guangsha Vocational and Technical University of Construction)
Zhou, Jilie (School of Mechanical Engineering, Zhejiang University)
Elvenia, Marischa Ray (Nabi Data Science & Computational Intelligence Research Co.)
Publication Information
Steel and Composite Structures / v.45, no.3, 2022 , pp. 409-423 More about this Journal
Abstract
Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.
Keywords
cantilever pipe; external loads; fluid-conveying; fractional viscoelastic model; nonlinear foundation; primary resonance;
Citations & Related Records
Times Cited By KSCI : 37  (Citation Analysis)
연도 인용수 순위
1 Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.   DOI
2 Bambaeechee, M. (2019), "Free vibration of AFG beams with elastic end restraints", Steel Compos. Struct., 33(3), 403-432. https://doi.org/10.12989/scs.2019.33.3.403.   DOI
3 Barati, M.R., and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588.   DOI
4 Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Reviews, 49(1), 1-28.   DOI
5 Beni, Y.T. and Alihemmati, J. (2022), "On the coupled transient hygrothermal analysis in the porous cylindrical panels", Transport Porous Media, 142, 89-114, https://doi.org/10.1007/s11242-021-01605-2.   DOI
6 Marin, M., Agarwal, R.P. and Mahmoud, S.R., (2013), "Modeling a microstretch thermo-elastic body with two temperatures", Abstract Appl. Anal., 2013, Art. No 583464.
7 Marin, M. (2010b), "A domain of influence theorem for microstretch elastic materials", Nonlinear Anal. Real World Appl., 11(5), 3446-3452. https://doi.org/10.1016/j.nonrwa.2009.12.005.   DOI
8 Marin, M., Othman, M.I.A., Seadawy, A.R. and Carstea, C. (2020), "A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies", J. Taibah Univ. Sci., 14(1), 653-660, https://doi.org/10.1080/16583655.2020.1763664.   DOI
9 Wattanasakulpong, N. and Eiadtrong, S. (2022), "Transient responses of sandwich plates with a functionally graded porous core: Jacobi-Ritz Method", Int. J. Struct. Stab. Dyn., https://doi.org/10.1142/s0219455423500396.   DOI
10 Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753.   DOI
11 Noori, A.R., Aslan, T.A. and Temel, B. (2021), "Dynamic analysis of functionally graded porous beams using complementary functions method in the laplace domain", Compos. Struct., 256. https://doi.org/10.1016/j.compstruct.2020.113094.   DOI
12 Mechab, I., Meiche, N.E. and Bernard, F. (2016), "Free vibration analysis of higher-order shear elasticity nanocomposite beams with consideration of nonlocal elasticity and poisson Effect", J. Nanomech. Micromech., 6(3), 1-13. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000110.   DOI
13 Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.   DOI
14 Nayfeh, A.H. and Mook, D.T. (2008), "Nonlinear oscillations", John Wiley & Sons.
15 Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.   DOI
16 Noori, A.R., Aslan, T.A. and Temel, B. (2018), "An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section", Compos. Struct., 200, 701-710. https://doi.org/10.1016/j.compstruct.2018.05.077.   DOI
17 Lai, B., Richard, J.Y. and Xiong, M. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel Compo. Struct., 33(1), 67-79. https://doi.org/10.12989/scs.2019.33.1.067.   DOI
18 Afrookhteh, S.S., Fathi, A., Naghdipour, M. and Alizadeh Sahraei, A. (2016), "An experimental investigation of the effects of weight fractions of reinforcement and timing of hardener addition on the strain sensitivity of carbon nanotube/polymer composites", U.P.B. Sci. Bull., Series B, 78(4), 121-130.
19 Keleshteri, M.M. and Jelovica, J. (2021), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., http://doi.org/10.1007/s00366-021-01553-x.   DOI
20 Khouddar, Y.E., Adri, A., Outassafte, O., El Hantati, I, Rifai, S. and Benamar, R. (2022), "Influence of hygro-thermal effects on the geometrically nonlinear free and forced vibrations of piezoelectric functional gradient beams with arbitrary number of concentrated masses", Arch. Appl. Mech., 92, 2767-2784. https://doi.org/10.1007/s00419-022-02219-w.   DOI
21 Lopes, J.L., Paidoussis, M.P. and Semler, C. (2002), "Linear and nonlinear dynamics of cantilevered cylinders in axial flow-part II: the equations of motion", J. Fluids Struct., 16(6), 715-737.   DOI
22 Langer, P., Jelich, C., Guist, C., Peplow, A. and Marburg, S. (2021), "Simplification of complex structural dynamic models: A case study related to a cantilever beam and a large mass attachment", Appl. Sci., 11(12), https://doi.org/10.3390/app11125428.   DOI
23 Li, X., Zhou, X., Liu, J. and Wang, X. (2019), "Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete", Steel Compos. Struct., 32(3), 411-422. https://doi.org/10.12989/scs.2019.32.3.411.   DOI
24 Liu, R. and Wang, L. (2015), "Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics", Phys. Chemistry Chemical Phys., 7. https://doi.org/10.1039/C4CP05495D.   DOI
25 Marin, M. (2010a), "Harmonic Vibrations in Thermoelasticity of Microstretch Materials", J. Vib. Acoust., Transact. ASME, 132(4), Art. No. 044501.   DOI
26 Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J. and Xu, X. (2019) "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", Int. J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.   DOI
27 Yu, C., Lu, J., Li, S., Xu, W. and Chiu, C. (2021), "Dynamics sensitivity analyses of Functionally Graded Porous (FGP) curved beams with variable curvatures and general boundary conditions", Int. J. Struct. Stab. Dyn., 21(11). https://doi.org/10.1142/S0219455421501510.   DOI
28 Zhang, Y. and Wang, Lifeng (2018), "Thermally stimulated nonlinear vibration of rectangular single-layered black phosphorus", J. Appl. Phys., 124(13), https://doi.org/10.1063/1.5047584.   DOI
29 Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer K. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic Zinc-Oxide (ZnO) nanoparticles", Entropy, 22(10), 1070. https://doi.org/10.3390/e22101070.   DOI
30 Chen, X. and Chen, X. (2016), "Effect of local wall thinning on ratcheting behavior of pressurized 900 elbow pipe under reversed bending using finite element analysis", Steel Compos. Struct., 20(4), 931-950. https://doi.org/10.12989/scs.2016.20.4.931.   DOI
31 Chen, X., Chen, X. and Li, Z. (2019), "Ratcheting boundary of pressurized pipe under reversed bending", Steel Compos. Struct., 32(3), 312-323. https://doi.org/10.12989/scs.2019.32.3.312.   DOI
32 Dong, Y., Li, X., Gao, K., Li, Y., and Yang, J. (2019), "Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment", Nonlinear Dyn., 99, 981-1000. https://doi.org/10.1007/s11071-019-05297-8.   DOI
33 Hellum, A.M., Mukherjee, R. and Hull, A.J. (2010), "Dynamics of pipes conveying fluid with turbulent and laminar velocity profiles", J. Fluids Struct., 26(5), 804-813.   DOI
34 Fakhar, M.H., Fakhar, A. and Tabatabaei, H. (2019), "Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field", Steel Compos. Struct., 30(3), 281-292. https://doi.org/10.12989/scs.2019.30.3.281.   DOI
35 Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.   DOI
36 Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Composite Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.   DOI
37 Ibrahim, R.A. (2010), "Overview of mechanics of pipes conveying fluids-Part I: fundamental studies", J. Pressure Vessel Technol., 132(3), 1-32.   DOI
38 Shaw, S. (2001), "Perturbation techniques for nonlinear systems", Encyclopedia Vib., 1009-1011, https://doi.org/10.1006/rwvb.2001.0042.   DOI
39 Shu, C. and Wang, C. (1999), "Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates", Eng. Struct., 21(2), 125-134.   DOI
40 Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates ", Steel and Composite Structures, An Int'l Journal, 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.   DOI
41 Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261.   DOI
42 Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.   DOI
43 Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.   DOI
44 Cao, J., Zhang, Z., Guo, Y. and Gong, T. (2019), "Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe", Steel Compos. Struct., 31(3), 233-242. https://doi.org/10.12989/scs.2019.31.3.233.   DOI
45 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.   DOI
46 Tahouneh, V., Naei, M.H., Mosavi Mashhadi, M. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727. https://doi.org/10.12989/scs.2019.33.5.717.   DOI
47 Tang, Y., Yang, T. and Fang, B. (2018), "Fractional dynamics of fluidconveying pipes made of polymer-like materials", Acta Mech. Solida Sin., 31(2), 243-258. 2018.   DOI
48 Toh, W., Tan, L.B., Tse, K.M., Raju, K., Lee, H.P. and Tan, V.B.C. (2018), "Numerical evaluation of buried composite and steel pipe structures under the effects of gravity", Steel Compos. Struct., 26(1), 55-66. https://doi.org/10.12989/scs.2018.26.1.055.   DOI
49 Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polymer Compos., https://doi.org/10.1002/pc.24520.   DOI
50 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.   DOI
51 Kamil Zur, K. and Jankowski, P. (2019), "Multiparametric analytical solution for the eigenvalue problem of FGM porous circular plates", Symmetry, 11(429), 1-24. https://doi.org/10.3390/sym11030429.   DOI
52 Cuma, Y.C. and Calim, F.F. (2021), "Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area", Mech. Time-Depend. Mater., https://doi.org/10.1007/s11043-021-09520-1.   DOI
53 Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.   DOI
54 Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293, https://doi.org/10.12989/anr.2021.10.3.281.   DOI
55 Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., 27(5), 537-543. https://doi.org/10.12989/scs.2018.27.5.537.   DOI
56 Wang, L. and Hu, H. (2014b), "Thermal vibration of a rectangular single-layered graphene sheet with quantum effects", J. Appl. Phys., 115(23), https://doi.org/10.1063/1.4885015.   DOI
57 Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.   DOI
58 Wang, J. and Sun, Q. (2019), "Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading", Steel Compos. Struct., 32(2), 199-212. https://doi.org/10.12989/scs.2019.32.2.199.   DOI
59 Wang, L. and Hu, H. (2014a), "Thermal vibration of single-walled carbon nanotubes with quantum effects", Proc. R. Soc. A., 470. http://dx.doi.org/10.1098/rspa.2014.0087.   DOI
60 Wang, Y., Feng, C., Yang, J., Zhou, D. and Wang, S. (2021), "Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method", Comput. Methods Appl. Mech. Eng., 379, https://doi.org/10.1016/j.cma.2021.113761.   DOI
61 Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.   DOI
62 Zahrai, S.M., Mirghaderi, S.R. and Saleh, A. (2017), "Increasing plastic hinge length using two pipes in a proposed web reduced beam section, an experimental and numerical study", Steel Compos. Struct., 23(4), 421-433. https://doi.org/10.12989/scs.2017.23.4.421.   DOI
63 Zhou, Z.G., Wu, L.Z. and Du, S.Y. (2006), "Non-local theory solution for a Mode I crack in piezoelectric materials", Eur. J. Mech. A/Solids, 25(5), 793-807. https://doi.org/10.1016/j.euromechsol.2005.10.003.   DOI
64 Rossikhin, Y.A. and Shitikova, M.V. (2012), "On fallacies in the decision between the Caputo and Riemann-Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator", Mech. Res. Commun., 45, 22-27.   DOI
65 Paidoussis, M.P. (1998), "Fluid-structure interactions: slender structures and axial flow", 1, Elsevier Academic Press, London, UK.
66 Paidoussis, M.P. and Li, G.L. (1993), "Pipes conveying fluid: a dynamical model problem", J. Fluids Struct., 7(2), 137-204.   DOI
67 Qian, Q., Wang, Y., Zhu, F., Feng, C., Yang, J. and Shuguang Wang, S. (2022), "Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs)", Archiv. Civ. Mech. Eng., 22(53), https://doi.org/10.1007/s43452-021-00369-2.   DOI
68 Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/scs.2015.19.6.1369.   DOI
69 Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890.   DOI
70 Rumeng, L. and Wang, Lifeng (2016), "Thermal vibration of a doublelayered graphene sheet with initial stress at low temperature", Chinese Science Bulletin, 62(4), 245-253. https://doi.org/10.1360/N972016-00927.   DOI
71 Saffari, P.R., Fakhraie, M. and Roudbari, M.A. (2020), "Nonlinear vibration of fluid conveying cantilever nanotube resting on viscopasternak foundation using non-local strain gradient theory", Micro Nano Lett., 15(3), 183-188.
72 Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.   DOI
73 Wang, L. and Hu, H. (2015), "Thermal vibration of a circular singlelayered graphene sheet with simply supported or clamped boundary", J. Sound Vib., 349, 206-215. https://doi.org/10.1016/j.jsv.2015.03.045.   DOI
74 Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.   DOI
75 Afrookhteh, S.S., Shakeri, M., Baniassadi, M. and Alizadeh Sahraei, A. (2018), "Microstructure Reconstruction and Characterization of the Porous GDLs for PEMFC Based on Fibers Orientation Distribution", Fuel Cells, 18(2), https://doi.org/10.1002/fuce.201700239.   DOI
76 Ahmadi, S.M., Campoli, G., Yavari, S.A., Sajadi, B., Wauthle, R., Schrooten, J., Weinans, H. and Zadpoor, A.A. (2014), "Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells", J. Mech. Behav. Biomed. Mater., 34, 106-115. https://doi.org/10.1016/j.jmbbm.2014.02.003.   DOI
77 Alizadeh Sahraei, A., Mokarizadeh, A.H., George, D., Rodrigue, D., Baniassadi, M., Foroutan, M. (2019), "Insights into interphase thickness characterization for graphene/epoxy nanocomposites: A molecular dynamics simulation", Phys. Chem. Chem. Phys., 21(36), 19890-19903. https://doi.org/10.1039/C9CP04091A.   DOI
78 Nguyen, X.H., Le, D.D. and Nguyen, Q.H. (2019), "Static behavior of novel RCS through-column-type joint: Experimental and numerical study", Steel and Composite Structures, An Int'l Journal, 32(1), 111-126. https://doi.org/10.12989/scs.2019.32.1.111.   DOI
79 Ni, Q., Zhang, Z.L. and Wang, L. (2011), "Application of the differential transformation method to vibration analysis of pipes conveying fluid", Appl. Math. Comput., 217, 7028-7038.
80 Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.   DOI
81 Wang, Q. (2002), "On buckling of column structures with a pair of piezoelectric layers", Eng. Struct., 24, 199-205.   DOI
82 Wang, Y., Zhou, Y., Feng, C., Yang, J., Zhou, D. and Wang, S. (2022), "Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate", Appl. Math. Model., 101, 239-258, https://doi.org/10.1016/j.apm.2021.08.003.   DOI