• Title/Summary/Keyword: Resolvent Operator

Search Result 77, Processing Time 0.024 seconds

Strong Convergence Theorems for Common Points of a Finite Family of Accretive Operators

  • Jeong, Jae Ug;Kim, Soo Hwan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.445-464
    • /
    • 2019
  • In this paper, we propose a new iterative algorithm generated by a finite family of accretive operators in a q-uniformly smooth Banach space. We prove the strong convergence of the proposed iterative algorithm. The results presented in this paper are interesting extensions and improvements of known results of Qin et al. [Fixed Point Theory Appl. 2014(2014): 166], Kim and Xu [Nonlinear Anal. 61(2005), 51-60] and Benavides et al. [Math. Nachr. 248(2003), 62-71].

Algorithm of Common Solutions to the Cayley Inclusion and Fixed Point Problems

  • Dar, Aadil Hussain;Ahmad, Mohammad Kalimuddin;Iqbal, Javid;Mir, Waseem Ali
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.257-267
    • /
    • 2021
  • In this paper, we develop an iterative algorithm for obtaining common solutions to the Cayley inclusion problem and the set of fixed points of a non-expansive mapping in Hilbert spaces. A numerical example is given for the justification of our claim.

A NOTE ON DISCRETE SEMIGROUPS OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES

  • Blali, Aziz;Amrani, Abdelkhalek El;Ettayb, Jawad
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.409-414
    • /
    • 2022
  • Let A ∈ B(X) be a spectral operator on a non-archimedean Banach space over an algebraically closed field. In this note, we give a necessary and sufficient condition on the resolvent of A so that the discrete semigroup consisting of powers of A is uniformly-bounded.

ITERATING A SYSTEM OF SET-VALUED VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER PRODUCT SPACES

  • Shafi, Sumeera
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.255-275
    • /
    • 2022
  • In this paper, we introduce a new system of set-valued variational inclusion problems in semi-inner product spaces. We use resolvent operator technique to propose an iterative algorithm for computing the approximate solution of the system of set-valued variational inclusion problems. The results presented in this paper generalize, improve and unify many previously known results in the literature.

ON NONLINEAR VARIATIONAL INCLUSIONS WITH ($A,{\eta}$)-MONOTONE MAPPINGS

  • Hao, Yan
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.159-169
    • /
    • 2009
  • In this paper, we introduce a generalized system of nonlinear relaxed co-coercive variational inclusions involving (A, ${\eta}$)-monotone map-pings in the framework of Hilbert spaces. Based on the generalized resol-vent operator technique associated with (A, ${\eta}$)-monotonicity, we consider the approximation solvability of solutions to the generalized system. Since (A, ${\eta}$)-monotonicity generalizes A-monotonicity and H-monotonicity, The results presented this paper improve and extend the corresponding results announced by many others.

APPROXIMATION AND CONVERGENCE OF ACCRETIVE OPERATORS

  • Koh, Young Mee;Lee, Young S.
    • Korean Journal of Mathematics
    • /
    • v.4 no.2
    • /
    • pp.125-133
    • /
    • 1996
  • We show that if X is a reflexive Banach space with a uniformly G$\hat{a}$teaux differentiable norm, then the convergence of semigroups acting on Banach spaces $X_n$ implies the convergence of resolvents of generators of semigroups.

  • PDF

A CHARACTERIZATION OF LOCAL RESOLVENT SETS

  • Han Hyuk;Yoo Jong-Kwang
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.253-259
    • /
    • 2006
  • Let T be a bounded linear operator on a Banach space X. And let ${{\rho}T}(X)$ be the local resolvent set of T at $x\;{\in}\;X$. Then we prove that a complex number ${\lambda}$ belongs to ${{\rho}T}(X)$ if and only if there is a sequence $\{x_{n}\}$ in X such that $x_n\;=\;(T - {\lambda})x_{n+1}$ for n = 0, 1, 2,..., $x_0$ = x and $\{{\parallel}x_n{\parallel}^{\frac{1}{n}}\}$ is bounded.

STABILITY IN THE α-NORM FOR SOME STOCHASTIC PARTIAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Diop, Mamadou Abdoul;Ezzinbi, Khalil;Lo, Modou
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.149-167
    • /
    • 2019
  • In this work, we study the existence, uniqueness and stability in the ${\alpha}$-norm of solutions for some stochastic partial functional integrodifferential equations. We suppose that the linear part has an analytic resolvent operator in the sense given in Grimmer [8] and the nonlinear part satisfies a $H{\ddot{o}}lder$ type condition with respect to the ${\alpha}$-norm associated to the linear part. Firstly, we study the existence of the mild solutions. Secondly, we study the exponential stability in pth moment (p > 2). Our results are illustrated by an example. This work extends many previous results on stochastic partial functional differential equations.