A NOTE ON DISCRETE SEMIGROUPS OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES

Aziz Blali, Abdelkhalek El Amrani, and Jawad Ettayb

Abstract

Let $A \in B(X)$ be a spectral operator on a non-archimedean Banach space over an algebraically closed field. In this note, we give a necessary and sufficient condition on the resolvent of A so that the discrete semigroup consisting of powers of A is uniformly-bounded.

1. Introduction and preliminaries

In the archimedean operator theory, necessary and sufficient conditions on the resolvent of a densely defined closed linear operator are given in order to be the infinitesimal generator of a strongly continuous semigroup $(T(s))_{s \in \mathbb{R}^{+}}$ such that there is $M \geq 1,\|T(s)\| \leq M$. For more details, we refer to [2,4]. In particular, we have the following theorem and its corollary.

Theorem 1.1 ([6]). A necessary and sufficient condition for a closed linear operator A with dense domain to be the infinitesimal generator of a strongly continuous semigroup $(T(s))_{s \in \mathbb{R}^{+}}$such that for all $s \in \mathbb{R}^{+},\|T(s)\| \leq M$ is that

$$
\left\|R_{\lambda}(A)^{n}\right\| \leq \frac{M}{\lambda^{n}}
$$

for $\lambda>0$ and $n \in \mathbb{N}$, where $R_{\lambda}(A)=(\lambda I-A)^{-1}$.
Corollary 1.2 ([6]). A necessary and sufficient condition for a closed linear operator A with dense domain to be the infinitesimal generator of a strongly continuous semigroup $(T(s))_{s \in \mathbb{R}^{+}}$such that for all $s \in \mathbb{R}^{+},\|T(s)\| \leq 1$ is that

$$
\left\|R_{\lambda}(A)\right\| \leq \frac{M}{\lambda}
$$

for $\lambda>0$.

[^0]Throughout this paper, X is a non-archimedean (n.a) Banach space over a (n.a) non trivially complete valued field \mathbb{K} of characteristic zero which is also algebraically closed with valuation $|\cdot|, B(X)$ denotes the set of all bounded linear operators on $X . \mathbb{Q}_{p}$ is the field of p-adic numbers ($p \geq 2$ being a prime) equipped with p-adic valuation $|\cdot|_{p}, \mathbb{Z}_{p}$ denotes the ring of p-adic integers of \mathbb{Q}_{p} and it is the unit ball of \mathbb{Q}_{p}. For more details and related issues, we refer to $[5,8]$. We denote the completion of the algebraic closure of \mathbb{Q}_{p} under the p-adic absolute value $|\cdot|_{p}$ by $\mathbb{C}_{p}($ see $[5])$. Let $r>0$ and Ω_{r} be the clopen ball of \mathbb{K} centred at 0 with radius $r>0$, that is $\Omega_{r}=\{t \in \mathbb{K}:|t|<r\}$. For more details on non-archimedean operators theory, we refer to $[1,2,7]$.
Definition ([9]). For $A \in B(X)$, let $\nu(A)=\inf _{n}\left\|A^{n}\right\|^{\frac{1}{n}}=\lim _{n}\left\|A^{n}\right\|^{\frac{1}{n}} . A$ is said to be a spectral operator if $\sup \{|\lambda|: \lambda \in \sigma(A)\}=\nu(A)$. For $A \in B(X)$, set

$$
U_{A}=\left\{\lambda \in \mathbb{K}:(I-\lambda A)^{-1} \in B(X)\right\}
$$

$\left(U_{A}\right.$ is open and $\left.0 \in U_{A}\right)$ and

$$
C_{A}=\left\{\alpha \in \mathbb{K}: B(0,|\beta|) \subset U_{A} \text { for some } \beta \in \mathbb{K},|\beta|>|\alpha|\right\} .
$$

We have the following proposition.
Proposition 1.3 ([9]). Let $A \in B(X)$. Then the following are equivalent.
(i) A is a spectral operator.
(ii) For all $\lambda \in C_{A},(I-\lambda A)^{-1}=\sum_{n=0}^{\infty} \lambda^{n} A^{n}$.
(iii) For each $\alpha \in C_{A}^{*}$, the function $\lambda \mapsto(I-\lambda A)^{-1}$ is analytic on $B(0,|\alpha|)$.

We begin with the following definition.
Definition ([3]). Let X be a non-archimedean Banach space over \mathbb{K}. A family $(T(n))_{n \in \mathbb{N}}$ of bounded linear operators is said to be a discrete semigroup of bounded linear operators on X if
(i) $T(0)=I$, where I is the unit operator of X,
(ii) For all $m, n \in \mathbb{N}, T(m+n)=T(m) T(n)$.

Remark 1.4. Let $A \in B(X)$. Then, $T(n)=A^{n}$ is a discrete semigroup of bounded linear operators on X, and its generator is A.
Definition ([3]). Let X be a non-archimedean Banach space over \mathbb{K}. A discrete semigroup $(T(n))_{n \in \mathbb{N}}$ is said to be uniformly bounded if $\sup _{n \in \mathbb{N}}\|T(n)\|$ is finite.
Example 1.5 ([3]). Let $\mathbb{K}=\mathbb{Q}_{p}$. If

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

then A generates a discrete semigroup of bounded linear operators $(T(n))_{n \in \mathbb{N}}$ given by:

$$
T(n)=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right), \forall n \in \mathbb{N}
$$

We have the following definition.
Definition ([3]). Let $(T(n))_{n \in \mathbb{N}}$ be a discrete semigroup of bounded linear operators on $X .(T(n))_{n \in \mathbb{N}}$ is said to be a semigroup of contractions if $\|T(n)\| \leq$ 1 for all $n \in \mathbb{N}$.

Definition ([1]). Let $\omega=\left(\omega_{i}\right)_{i}$ be a sequence of non-zero elements of \mathbb{K}. We define \mathbb{E}_{ω} by

$$
\mathbb{E}_{\omega}=\left\{x=\left(x_{i}\right)_{i}: \forall i \in \mathbb{N}, x_{i} \in \mathbb{K}, \text { and } \lim _{i \rightarrow \infty}\left|\omega_{i}\right|^{\frac{1}{2}}\left|x_{i}\right|=0\right\},
$$

and it is equipped with the norm

$$
\forall x \in \mathbb{E}_{\omega}: x=\left(x_{i}\right)_{i},\|x\|=\sup _{i \in \mathbb{N}}\left(\left|\omega_{i}\right|^{\frac{1}{2}}\left|x_{i}\right|\right)
$$

Remark $1.6([1])$. The space $\left(\mathbb{E}_{\omega},\|\cdot\|\right)$ is a non-archimedean Banach space.
Example 1.7. Let $X=\mathbb{E}_{\omega}$ with $\omega_{i}=p^{i}$ for all $i \in \mathbb{N}$. Let A be a unilateral shift given by

$$
A e_{i}=e_{i+1} \text { for all } i \in \mathbb{N} .
$$

Then $A^{n} e_{i}=e_{n+i}$ for all $n \in \mathbb{N}$, hence, $\frac{\left\|A^{n} e_{i}\right\|}{\left\|e_{i}\right\|}=p^{\frac{-n}{2}} \leq 1$ for all $i, n \in$ \mathbb{N}. Consequently, $\left\|A^{n}\right\| \leq 1$ for all $n \in \mathbb{N}$. Moreover, $\left(A^{n}\right)_{n \in \mathbb{N}}$ is a discrete semigroup of contractions on \mathbb{E}_{ω}.
Lemma $1.8([3])$. Let $(T(n))_{n \in \mathbb{N}}$ be a discrete semigroup on X such that $\sup _{n \in \mathbb{N}}\|T(n)\| \leq M$. Then there exists an equivalent norm on X such that T $n \in \mathbb{N}$ becomes a contraction.

In the rest of this paper, we let $A \in B(X)$ be a spectral operator such that $\sup _{n \in \mathbb{N}}\left\|A^{n}\right\|$ is finite, and assume that $U_{A}=\Omega_{1}$ where $\Omega_{1}=\{\lambda \in \mathbb{K}:|\lambda|<1\}$, and for all $\lambda \in U_{A}, R(\lambda, A)=(I-\lambda A)^{-1}$.

Proposition 1.9 ([3]). Let X be a non-archimedean Banach space over \mathbb{K}, and let A be a spectral operator for which there is $M \geq 1$ such that $\sup _{n \in \mathbb{N}}\left\|A^{n}\right\| \leq M$. Then

$$
\|R(\lambda, A)\| \leq M \quad \text { for all } \lambda \in C_{A} .
$$

Proposition 1.10 ([3]). Let $A \in B(X)$ be a spectral operator, and let $\left(A^{n}\right)_{n \in \mathbb{N}}$ be a discrete semigroup of bounded linear operators on X such that $\sup _{n \in \mathbb{N}}\left\|A^{n}\right\|$ is finite and $U_{A}=B(0,1)$. Then, for all $\lambda, \mu \in C_{A}$,

$$
\lambda R(\lambda, A)-\mu R(\mu, A)=(\lambda-\mu) R(\lambda, A) R(\mu, A)
$$

Proposition 1.11 ([3]). Let $A \in B(X)$ be a spectral operator such that $U_{A}=$ Ω_{1} and let $\left(A^{n}\right)_{n \in \mathbb{N}}$ be a discrete semigroup of contractions on X. Then for all $z \in C_{A},\|R(\lambda, A)-I\| \leq|\lambda|$.

As Proposition 2.12 of [3], we have the following proposition.

Proposition 1.12. Let $A \in B(X)$ be a spectral operator such that for all $k \in \mathbb{N},\left\|A^{k}\right\| \leq M$. Then for all $n \in \mathbb{N}, \alpha \in C_{A}^{*}, \lambda \in \Omega_{|\alpha|}$,

$$
R^{(n)}(\lambda, A)=\frac{n!(R(\lambda, A)-I)^{n} R(\lambda, A)}{\lambda^{n}}
$$

We have the following theorem.
Theorem 1.13 ([3]). Let X be a non-archimedean Banach space over \mathbb{C}_{p}, and $A \in B(X)$ be a spectral operator. Then for all $k \in \mathbb{N},\left\|A^{k}\right\| \leq 1$ if and only if

$$
\left\|(R(\lambda, A)-I)^{n} R(\lambda, A)\right\| \leq|\lambda|_{p}^{n}
$$

for all $\lambda \in \Omega_{|\alpha|}$ and $n \in \mathbb{N}$ where $\alpha \in C_{A}^{*}$ and $R(\lambda, A)=(I-\lambda A)^{-1}$.
Remark 1.14 ([8]). Let $x \in \mathbb{K}$ and $n \in \mathbb{N}$, we define $\binom{x}{0}=1$ and $\binom{x}{n}=$ $\frac{x(x-1) \cdots(x-n+1)}{n!}$. If $k \in \mathbb{N}$ such that $k \geq n$, then $\left|\binom{k}{n}\right| \leq 1$.

2. Main results

We have the following theorem.
Theorem 2.1. Let X be a non-archimedean Banach space over \mathbb{K}, and let $A \in B(X)$ be a spectral operator with $U_{A}=\Omega_{1}$. Then a necessary and sufficient condition that for all $k \in \mathbb{N},\left\|A^{k}\right\| \leq M$ is that

$$
\begin{equation*}
\left\|(R(\lambda, A)-I)^{n} R(\lambda, A)\right\| \leq M|\lambda|_{p}^{n} \tag{2.1}
\end{equation*}
$$

for all $\lambda \in \Omega_{|\alpha|}, n \in \mathbb{N}$ where $\alpha \in C_{A}^{*}$ and $R(\lambda, A)=(I-\lambda A)^{-1}$.
Proof. Assume that for all $k \in \mathbb{N},\left\|A^{k}\right\| \leq M$, and let $\alpha \in C_{A}^{*}$. Then by Proposition 1.3, $R(\lambda, A)=(I-\lambda A)^{-1}=\sum_{k=0}^{\infty} \lambda^{k} A^{k}$ is analytic on $\Omega_{|\alpha|}$. Using Proposition 1.12, for all $n \in \mathbb{N}, \lambda \in \Omega_{|\alpha|}$

$$
\begin{equation*}
R^{(n)}(\lambda, A)=\frac{n!(R(\lambda, A)-I)^{n} R(\lambda, A)}{\lambda^{n}} \tag{2.2}
\end{equation*}
$$

and

$$
R^{(n)}(\lambda, A)=\sum_{k=n}^{\infty} k(k-1) \cdots(k-n+1) \lambda^{k-n} A^{k}=\sum_{k=n}^{\infty} n!\binom{k}{n} \lambda^{k-n} A^{k}
$$

then for all $n \in \mathbb{N}$ and $\lambda \in \Omega_{|\alpha|}$,

$$
\begin{aligned}
\left\|\frac{R^{(n)}(\lambda, A)}{n!}\right\| & =\left\|\sum_{k=n}^{\infty}\binom{k}{n} \lambda^{k-n} A^{k}\right\| \\
& \leq \sup _{k \geq n}\left|\binom{k}{n}\right||\lambda|^{k-n}\left\|A^{k}\right\| \\
& \leq \sup _{k \geq n}|\lambda|^{k-n}\left\|A^{k}\right\| \\
& \leq M .
\end{aligned}
$$

Thus, for all $n \in \mathbb{N}$ and $\lambda \in \Omega_{|\alpha|}$,

$$
\begin{equation*}
\left\|\frac{R^{(n)}(\lambda, A)}{n!}\right\| \leq M \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we have for all $n \in \mathbb{N}, \lambda \in \Omega_{|\alpha|}$,

$$
\begin{equation*}
\left\|(R(\lambda, A)-I)^{n} R(\lambda, A)\right\| \leq M|\lambda|_{p}^{n} \tag{2.4}
\end{equation*}
$$

Conversely, let $A \in B(X)$ be a spectral operator, we assume that (2.1) holds, then for all $\lambda \in \Omega_{|\alpha|}, R(\lambda, A)=\sum_{n=0}^{\infty} \lambda^{n} A^{n}$. Set for all $\lambda \in \Omega_{|\alpha|}, k \in \mathbb{N}$, $S_{k}(\lambda)=\lambda^{-k}(R(\lambda, A)-I)^{k} R(\lambda, A)$, then for all $\lambda \in \Omega_{|\alpha|}, k \in \mathbb{N},\left\|S_{k}(\lambda)\right\| \leq M$. Since A and $R(\lambda, A)$ commute, we have

$$
\begin{aligned}
S_{k}(\lambda) & =\lambda^{-k}((I-(I-\lambda A)) R(\lambda, A))^{k} R(\lambda, A) \\
& =\lambda^{-k}(\lambda A R(\lambda, A))^{k} R(\lambda, A) \\
& =A^{k} R(\lambda, A)^{k+1} .
\end{aligned}
$$

Then for all $\lambda \in \Omega_{|\alpha|}, k \in \mathbb{N}$,

$$
\begin{aligned}
\left\|A^{k}\right\| & =\left\|(I-\lambda A)^{k+1} S_{k}(\lambda)\right\| \\
& \leq\left\|(I-\lambda A)^{k+1}\right\|\left\|S_{k}(\lambda)\right\| \\
& \leq M\left\|\sum_{j=0}^{k+1}\binom{k+1}{j}(-\lambda A)^{j}\right\| \\
& \leq M \max \left\{1,\|\lambda A\|,\left\|\lambda^{2} A^{2}\right\|, \ldots,\left\|\lambda^{k+1} A^{k+1}\right\|\right\}
\end{aligned}
$$

for $\lambda \rightarrow 0$, we have for all $k \in \mathbb{N},\left\|A^{k}\right\| \leq M$.
Remark 2.2. For $M=1$, we conclude Theorem 1.13.
Acknowledgements. The authors are greatly indebted to the editor and the referee for many valuable comments and suggestions improving the first version of this paper.

References

[1] T. Diagana, Non-Archimedean Linear Operators and Applications, Nova Science Publishers, Inc., Huntington, NY, 2007.
[2] A. El Amrani, A. Blali, J. Ettayb, and M. Babahmed, A note on Co-groups and C-groups on non-archimedean Banach spaces, Asian-European Journal of Mathematics, 2020.
3] A. El Amrani, J. Ettayb, and A. Blali, p-adic discrete semigroup of contractions, Proyecciones, accepted
[4] A. G. Gibson, A discrete Hille-Yosida-Phillips theorem, J. Math. Anal. Appl. 39 (1972), 761-770. https://doi.org/10.1016/0022-247X (72) 90196-5
[5] N. Koblitz, p-adic analysis: a short course on recent work, London Mathematical Society Lecture Note Series, 46, Cambridge University Press, Cambridge, 1980.
[6] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. https: //doi.org/10.1007/978-1-4612-5561-1
[7] A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Mathematics, 51, Marcel Dekker, Inc., New York, 1978.
[8] W. H. Schikhof, Ultrametric Calculus, Cambridge Studies in Advanced Mathematics, 4, Cambridge University Press, Cambridge, 1984.
[9] W. H. Schikhof, On p-adic compact operators, Tech. Report 8911, Departement of Mathematics, Catholic University, Nijmengen, The Netherlands (1989), 1-28.

Aziz Blali
Department of Mathematics and Computer Science Sidi Mohamed Ben Abdellah University
EnS B. P. 5206 Bensouda, Fez, Morocco
Email address: aziz.blali@usmba.ac.ma
Abdelkhalek EL Amrani
Department of Mathematics and Computer Science
Sidi Mohamed Ben Abdellah University
Faculty of Sciences Dhar El Mahraz, Fez, Morocco
Email address: abdelkhalek.elamrani@usmba.ac.ma
Jawad Ettayb
Department of Mathematics and Computer Science
Sidi Mohamed Ben Abdellah University
Faculty of Sciences Dhar El Mahraz, Fez, Morocco
Email address: jawad.ettayb@usmba.ac.ma

[^0]: Received February 1, 2021; Revised April 26, 2021; Accepted May 25, 2021. 2010 Mathematics Subject Classification. Primary 47S10; Secondary 47A10, 47D03.
 Key words and phrases. Non-archimedean Banach spaces, spectral operator, discrete semigroups.

 Communicated by Choonkil Park.

