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Abstract. In this paper we have examined the spectra of the operator D(r, 0, 0, s) on

sequence spaces c0 and c.

1. Introduction

Spectral theory is an important branch of mathematics due to its application in
other branches of science. It has been proved to be a standard tool of mathematical
sciences because of its usefulness and application oriented scope in different fields.
In numerical analysis, the spectral values may determine whether a discretization
of a differential equation will get the right answer or how fast a conjugate gradient
iteration will converge. In aeronautics, the spectral values may determine whether
the flow over a wing is laminar or turbulent. In electrical engineering, it may deter-
mine the frequency response of an amplifier or the reliability of a power system. In
quantum mechanics, it may determine atomic energy levels and thus, the frequency
of a laser or the spectral signature of a star. In structural mechanics, it may de-
termine whether an automobile is too noisy or whether a building will collapse in
an earthquake. In ecology, the spectral values may determine whether a food web
will settle into a steady equilibrium. In probability theory, they may determine the
rate of convergence of a Markov process.
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Sequences spaces and series have been investigated from different aspects in
the recent past. In summability theory, different classes of matrices have been
investigated. Rath and Tripathy [10], Tripathy [11], Tripathy and Sen [25] and many
others have characterized different class of matrices transforming from one class of
sequences into another class of sequences. There are particular types of summability
methods like Nörlund mean, Riesz mean, Euler mean, Abel transformation etc.
Matrix methods have been studied from different aspects recently by Altin et.al [4],
Tripathy and Baruah [14] and others.

Functional analysis methods have been applied for studying different classes
of sequences by Tripathy and Mahanta [22], Tripathy and Sarma [24] and others.
The spectra of difference operator have also been investigated on some classes of
sequences. Altay and Basar ([1], [2], [3]) studied the spectra of difference operator
△ and generalized difference operator on c0, c and ℓp. Okutoyi [8] has studied the
spectra of Cesàro operator on bv0. Rath and Tripathy [9] have investigated the
spectra of the operator Schur matrices. Still there is a lot to be explored on spectra
of some matrix operators transforming one class of sequences into another class of
sequences.

Throughout N denote the set of non-negative integers. Throughout the paper
w, ℓ∞, c and c0 denote the space of all, bounded, convergent and null sequences x =
(xk) with complex terms, respectively, norm by ||x|| = sup

k |xk|. The zero sequence
is denoted by θ = (0, 0, 0, ...). Kizmaz [7] defined the difference sequence spaces
ℓ∞(△), c(△) and c0(△) as follows:

Z(△) = {x = (xk) : (△xk) ∈ Z}, for Z = ℓ∞, c and c0, where △x = (△xk) =
(xk − xk+1).

The above spaces are Banach spaces, normed by ||x||△ = ||x1||+ sup
k ||△xk||.

Different classes of sequence spaces using the difference operator have been in-
troduced and investigated in the recent past by Tripathy, Altin and Et [12], Tripathy
and Baruah [13], Tripathy and Borgohain [16], Tripathy and Chandra [17], Tripa-
thy, Choudhary and Sarma [18], Tripathy and Dutta [19], Tripathy and Mahanta
[21], Tripathy and Sarma [23] and many others. The idea of Kizmaz [7] was applied
to introduce a new type of generalized difference operator on sequence spaces by
Tripathy and Esi [20].

Let m ∈ N be fixed, then Esi and Tripathy [20] have introduced the following
type of difference sequence spaces

Z(△m) = {x = (xk) : (△mxk) ∈ Z} , for Z = ℓ∞, c and c0, where △mx =
(△mxk) = (xk − xk+m).

Taking m = 1, we have the sequence spaces ℓ∞(△), c(△) and c0(△) studied by
Kizmaz [7].

2. Preliminaries and definition

Let X be a linear space. By B(X), we denote the set of all bounded linear
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operators on X into itself. If T ∈ B(X), where X is a Banach space, then the
adjoint operator T ∗ of T is a bounded linear operator on the dual X∗ of X defined
by (T ∗ϕ)(x) = ϕ(Tx) for all ϕ ∈ X∗ and x ∈ X.

Let T : D(T ) → X be a linear operator, defined on D(T ) ⊂ X, where D(T )
denote the domain of T and X is a complex normed linear space. For T ∈ B(X) we
associate a complex number α with the operator (T −αI) denoted by Tα defined on
the same domain D(T ), where I is the identity operator. The inverse (T − αI)−1,
denoted by T−1

α is known as the resolvent operator of T .

A regular value is a complex number α of T such that
(R1) T

−1
α exists,

(R2) T
−1
α is bounded and

(R3) T
−1
α is defined on a set which is dense in X.

The resolvent set of T is the set of all such regular values α of T , denoted by
ρ(T ). Its complement is given by C \ ρ(T ) in the complex plane C is called the
spectrum of T , denoted by σ(T ). Thus the spectrum σ(T ) consist of those values
of α ∈ C, for which Tα is not invertible.

Classification of spectrum:

The spectrum σ(T ) is partitioned into three disjoint sets as follows:

(i) The point(discrete) spectrum σp(T ) is the set such that T−1
α does not exist.

Further α ∈ σp(T ) is called the eigen value of T.

(ii) The continuous spectrum σc(T ) is the set such that T−1
α exists and satisfies

(R3) but not (R2) that is T−1
α is unbounded.

(iii) The residual spectrum σr(T ) is the set such that T−1
α exists (and may be

bounded or not) but does not satisfy (R3), that is, the domain of T−1
α is not dense

in X.

This is to note that in finite dimensional case, continuous spectrum coincides
with the residual spectrum and equals to the empty set and the spectrum consists
of only the point spectrum.

Let E and F be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank, where n, k ∈ N = {0, 1, 2, ...}. Then, we say that A
defines a matrix mapping from E into F , denote by A : E → F , if for every sequence

x = (xn) ∈ E the sequence Ax = {(Ax)n} is in F where (Ax)n =
∞∑
k=0

ankxk,

provided the right hand side converges for every n ∈ N and x ∈ E.
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Our main focus in this paper is on the operator D(r, 0, 0, s), where

D(r, 0, 0, s) =


r 0 0 0 ...
0 r 0 0 ...
0 0 r 0 ...
s 0 0 r ...
0 s 0 0 ...
. . . . ...


Here we assume that r and s are complex parameters and (s ̸= 0).

Remark. In particular if we consider r = −1 and s = 1 then D(−1, 0, 0, 1) = △3.

Lemma 2.1. The matrix A = (ank) gives rise to a bounded linear operator T ∈ B(c)
i.e. from c to itself if and only if
(1) the rows of A are in ℓ1 and their ℓ1 norms are bounded,
(2) the columns of A are in c,
(3) the sequence of row sums of A is in c.
The operator norm of T is the supremum of the ℓ1 norms of the rows.

Corollary 2.1. D(r, 0, 0, s) : c → c is a bounded linear operator and ||D(r, 0, 0, s)||(c,c) =
|r|+ |s|.

Lemma 2.2. The matrix A = (ank) gives rise to a bounded linear operator
T ∈ B(c0) i.e from c0 to itself if and only if
(1) the rows of A are in ℓ1 and their ℓ1 norms are bounded,
(2) the columns of A are in c0.
The operator norm of T is the supremum of the ℓ1 norms of the rows.

Corollary 2.2. D(r, 0, 0, s) : c0 → c0 is a bounded linear operator and
||D(r, 0, 0, s)||(c0,c0) = |r|+ |s|.

Lemma 2.3. Let T ∈ B(X), where X is any Banach space. Then the spec-
trum of T ∗ is identical with the spectrum of T . Further Rλ(T ) = (T − λI)−1 and
ρ(T ) =

{
λ ∈ C : (T − λI)−1exists

}
.

Lemma 2.4. T has a dense range if and only if T ∗ is one to one, where T ∗ denote
the adjoint operator of T .

3. Spectrum of the operator D(r, 0, 0, s) on the sequence spaces c0 and c.

Theorem 3.1. σ(D(r, 0, 0, s), c0) = {α ∈ C : |r − α| ≤ |s|} .
Proof. First, we prove that (D(r, 0, 0, s) − αI)−1 exits and is in (c0, c0) for
|r − α| > |s| and then we show that the operator (D(r, 0, 0, s) − αI) is not in-
vertible for |r − α| ≤ |s|.
Let α ̸∈ {α ∈ C : |r − α| ≤ |s|}. Since s ̸= 0 we have α ̸= r and so (D(r, 0, 0, s)−αI)
is triangle, hence (D(r, 0, 0, s)− αI)−1 exists.
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Let, 
r − α 0 0 0 0 ...
0 r − α 0 0 0 ...
0 0 r − α 0 0 ...
s 0 0 r − α 0 ...
0 s 0 0 r − α ...
. . . . . ...




p0 0 0 0 0 ...
p1 p0 0 0 0 ...
p2 p1 p0 0 0 ...
p3 p2 p1 p0 0 ...
p4 p3 p2 p1 p0 ...
. . . . . ...



=


1 0 0 0 0 ...
0 1 0 0 0 ...
0 0 1 0 0 ...
0 0 0 1 0 ...
0 0 0 0 1 ...
. . . . . ...

 .

Then we have
p0 = 1

r−α
p1 = 0
p2 = 0
p3 = − s

(r−α)2

p4 = 0
p5 = 0

p6 = s2

(r−α)3

- - -
we obtain
p3k = (−s)k

(r−α)k+1 , (k ≥ 0)

and
p3k+1 = 0, (k ≥ 0)
and
p3k+2 = 0, (k ≥ 0).

Hence, we get

(D(r, 0, 0, s)− αI)−1 =



1
r−α 0 0 0 0 ...

0 1
r−α 0 0 0 ...

0 0 1
r−α 0 0 ...

− s
(r−α)2 0 0 1

r−α 0 ...

0 − s
(r−α)2 0 0 1

r−α ...

. . . . ...


.

Clearly, columns of (D(r, 0, 0, s)− αI)−1 are in c0 if |r − α| > |s|.

Again, ||(D(r, 0, 0, s) − αI)−1||(c0,c0) = sup
n

n∑
k=1

|pk| =
∞∑
k=0

|pk| =
∞∑

m=0
|p3m| +
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∞∑
m=0

|p3m+1|+
∞∑

m=0
|p3m+2| = 1

|r−α|

∞∑
m=0

| s
(r−α) |

m
+ 0 + 0 < ∞ if |r − α| > |s|.

Thus, (D(r, 0, 0, s)− αI)−1 ∈ (c0, c0) if |r − α| > |s|.

Conversely let, α ∈ {α ∈ C : |r − α| ≤ |s|} and r ̸= α. Since (D(r, 0, 0, s)−αI) is
a triangle, (D(r, 0, 0, s)−αI)−1 exists but ||(D(r, 0, 0, s)−αI)−1|| = ∞, if |r−α| < |s|
that is, (D(r, 0, 0, s)− αI)−1 ̸∈ B(c0).

If r = α, then the operator

(D(r, 0, 0, s)− αI) =


0 0 0 0 0 ...
0 0 0 0 0 ...
s 0 0 0 0 ...
0 s 0 0 0 ...
. . . . ...

 = D(0, 0, 0, s).

Since R(D(0, 0, 0, s)) ̸= c0, so D(0, 0, 0, s) is not invertible. This completes the
proof.2

Theorem 3.2. σp(D(r, 0, 0, s), c0) = Ø.

Proof. Suppose that D(r, 0, 0, s)x = αx for x ̸= θ = (0, 0, 0, ...) in c0. Then by
solving the system of linear equations we have

rx0 = αx0

rx1 = αx1

rx2 = αx2

sx0 + rx3 = αx3

sx1 + rx4 = αx4

- - -
sxk + rxk+3 = αxk+3, (k ≥ 0).

If xn0 ̸= 0 is the first non-zero entry of the sequence x = (xn), then α = r and
xn0+k = 0 for all k ∈ N . This contradicts the fact that xn0 ̸= 0. This completes
the proof. 2

If T : c0 → c0 is a bounded linear operator with the matrix A, then it is well
known that its adjoint operator T ∗ : c∗0 → c∗0 is defined by transpose of the matrix A.

It should be noted that the dual space c∗0 of c0 is isometrically isomorphic to

the Banach space ℓ1 of absolutely summable sequences normed by ||x|| =
∞∑
k=0

|xk|.

Theorem: 3.3. σp(D(r, 0, 0, s)∗, c∗0) = {α ∈ C : |r − α| < |s|} .
Proof. Suppose that D(r, 0, 0, s)∗x = αx for x ̸= θ in c∗0

∼= ℓ1. Then by solving the
system of linear equations we have
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rx0 + sx3 = αx0

rx1 + sx4 = αx1

rx2 + sx5 = αx2

−−−
rxk + sxk+3 = αxk, (k ≥ 0).

Now, from above system of equations we have,∑
|xn| = |x0|

{
1 + |α−r

s |+ |α−r
s |2 + ...

}
+ |x1|

{
1 + |α−r

s |+ |α−r
s |2 + ...

}
+ |x2|

{
1 + |α−r

s |+ |α−r
s |2 + ...

}
< ∞, if |α− r| < |s|.

That is x ∈ ℓ1 if and only if |α− r| < |s|. 2

Theorem 3.4. σ(D(r, 0, 0, s)∗, c∗0) = {α ∈ C : |r − α| ≤ |s|} .
Proof. We have σ(D(r, 0, 0, s)) = σ(D(r, 0, 0, s)∗). Now the proof follows from
Lemma 2.3 and Theorem 3.1. 2

Theorem 3.5. σr(D(r, 0, 0, s), c0) = {α ∈ C : |r − α| < |s|} .
Proof. For |r − α| < |s|, the operator (D(r, 0, 0, s) − αI) is one to one and hence
has an inverse. But Theorem 3.3 implies that (D(r, 0, 0, s)∗ − αI) is not one to
one for |r − α| < |s|. Now using Lemma 2.4 we can conclude that the range
of (D(r, 0, 0, s) − αI) is not dense in c0, that is R(D(r, 0, 0, s)− αI) ̸= c0. This
completes the proof. 2

Theorem 3.6. σc(D(r, 0, 0, s), c0) = {α ∈ C : |r − α| = |s|} .

Proof. The proof immediately follows from the fact that the set of spectrum is the
disjoint union of the point spectrum, residual spectrum and continuous spectrum,
that is
σ(D(r, 0, 0, s), c0) = σp(D(r, 0, 0, s), c0)∪σr(D(r, 0, 0, s), c0)∪σc(D(r, 0, 0, s), c0). 2

Theorem 3.7. σ(D(r, 0, 0, s), c) = {α ∈ C : |r − α| ≤ |s|}.
Proof. This is obtained in the similar way that is used in the proof of Theorem
3.1. 2

Theorem 3.8. σp(D(r, 0, 0, s), c) = Ø.

Proof. The result can be established in a way similar to the proof of Theorem
3.2. 2

If T : c → c is a bounded matrix operator with matrix A, then T ∗ : c∗ → c∗

acting on c
⊕

ℓ1 has a matrix representation of the form

[
χ 0
b At

]
where χ is the

limit of the sequence of row sums of A minus the sum of the columns of A, and b
is the column vector whose kth entry is the limit of the kth column of A for each



254 B. C. Tripathy and A. Paul

k ∈ N . For D(r, 0, 0, s) : c → c, the matrix D(r, 0, 0, s)∗ ∈ B(ℓ1) is of the form

D(r, 0, 0, s)∗ =

(
r + s 0
0 D(r, 0, 0, s)t

)
.

Theorem 3.9. σp(D(r, 0, 0, s)∗, c∗) = {α ∈ C : |r − α| < |s|} ∪ {r + s}.
Proof. We suppose that D(r, 0, 0, s)∗y = αy, for y( ̸= θ) ∈ c∗(= c

⊕
ℓ1). We get the

following system of equations
(r + s)y0 = αy0
ry1 + sy4 = αy1
ry2 + sy5 = αy2
ry3 + sy6 = αy3
ry4 + sy7 = αy4
−−−
ryk + syk+3 = αyk, (k ≥ 1).
We obtain that,
(1) y4k = (α−r

s )ky1, (k ≥ 1)
and
(2) y4k+1 = (α−r

s )ky2, (k ≥ 1)
and
(3) y4k+2 = (α−r

s )ky3, (k ≥ 1).
If x0 ̸= 0, then α = r + s. So, α = r + s is an eigen value with the corresponding
eigen vector x = (x0, 0, 0, ...).If α ̸= r + s, then x0 = 0 and we observe that from
(1), (2) and (3) x ∈ ℓ1 if and only if |α− r| < |s|. 2

Theorem 3.10. σr(D(r, 0, 0, s), c) = σp(D(r, 0, 0, s)∗, c∗).

Proof. The proof can be obtained in a way analogous to the proof of theorem
3.5. 2

Theorem 3.11. σc(D(r, 0, 0, s), c) = {α ∈ C : |α− r| = |s|} \ {r + s}.
Proof. The proof immediately follows from the fact that the set of spectrum is the
disjoint union of the point spectrum, residual spectrum and continuous spectrum,
that is σ(D(r, 0, 0, s), c) = σp(D(r, 0, 0, s), c)∪σr(D(r, 0, 0, s), c)∪σc(D(r, 0, 0, s), c).

Conclusion : We can generalize our operator

(D(r, 0, 0, ..(n− 1)times, s) =



r 0 0 0 0 0 . . .
0 r 0 0 0 0 . . .
. . . . . . . . .
. . . . . . . . .
s 0 . . r 0 . . .
0 s 0 . . r . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .


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If we take r = −1 and s = 1, then the operator (D(r, 0, 0, ..(n − 1)times, s) will
be the same as the generalized difference operator △n. Further on considering the
operator (D(r, 0, 0, ..(n− 1)times, s) in place of D(r, 0, 0, s), one can get parallel all
our results obtained in this paper.

Acknowledgements The authors thank the reviewer for the comments on the first
draft of the paper.
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