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Abstract. In this paper, we develop an iterative algorithm for obtaining common so-

lutions to the Cayley inclusion problem and the set of fixed points of a non-expansive

mapping in Hilbert spaces. A numerical example is given for the justification of our claim.

1. Introduction

Everywhere in the paper V is assumed to be a real Hilbert space with inner
product and norm 〈·, ·〉 and ‖ · ‖, respectively and F (S) = {v ∈ V : Sv = v} to be
the fixed point set of the mapping S. If A : V → V and N : V → 2V are single and
multi-valued mappings, respectively then the variational inclusion problem consists
of obtaining v ∈ V such that

(1.1) 0 ∈ A(v) + N(v).
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Problem (1.1) and related problems have been considered by many authors in papers
such as [1, 2, 3, 7, 8, 10, 11], and has applications in economics, physics, and
structural analysis. Another problem known as the fixed point problem is the
problem of obtaining v∗ ∈ V such that

(1.2) v∗ = S(v∗).

Here S : V→ V. This problem (1.2) was considered in [6, 9, 12, 14], and is used for
mathematical models of real problems. For the last several years, many researchers,
see for example [12, 13, 14], have found common solutions to the problems (1.1)
and (1.2). In this paper we find a common solution to the Cayley inclusion problem
and the fixed point problem.

2. Preliminaries

In this section, we go through the basic definitions and results used in the paper.

Definition 2.1.([14]) A mapping S : V→ V is called non-expansive if

‖S(v)− S(w)‖ ≤ ‖v − w‖ ∀ v, w ∈ V.

Definition 2.2.([14]) A mapping A : V→ V is called α-inverse strongly monotone
if there exists α ∈ R+ such that

〈A(v)−A(w), v − w〉 ≥ α‖A(v)−A(w)‖2 ∀ v, w ∈ V.

Definition 2.3.([14]) Let N : V→ 2V be a multi-valued mapping, then it is said to
be

(i) monotone if for all v, w ∈ V, x ∈ N(v), y ∈ N(w) such that

0 ≤ 〈v − w, x− y〉 ;

(ii) strongly monotone if for all v, w ∈ V, x ∈ N(v), y ∈ N(w) there exists
θ ∈ R+ such that

θ‖v − w‖2 ≤ 〈v − w, x− y〉 ;

(iii) maximal monotone if N is monotone and (I+ηN)(V) = V for all η > 0, where
I is the identity mapping on V.

Lemma 2.1.([14]) Let {em}, {fm} and {gm} be three non-negative real sequences
satisfying the following condition:

em+1 ≤ (1− λm)em + fm + gm ∀ m ≥ m0,

where m0 is some non-negative integer, {λm} is a sequence in (0, 1) with
∑∞
m=0 λm =

∞, fm = o(λm) and
∑∞
m=0 gm <∞, then limm→∞ em = 0.
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Lemma 2.2.([5]) Let E be a real Banach space, J : E → 2E
∗

be the normalized
duality mapping, then for any x, y ∈ E, the following conclusion holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀j(x+ y) ∈ J(x+ y).

In particular, If E = V is a real Hilbert space, then

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ V.

Definition 2.4.([14]) Let K be a nonempty closed and convex subset of a Hilbert

space V, then for any v ∈ V, there exists a unique nearest point in K, designated
by PK(v), such that

‖v − PK(v)‖ ≤ ‖v − w‖, ∀w ∈ K.

This mapping PK from V to K is known as metric projection.

Remark 2.1. The metric projection PK has the following properties:

(i) PK : V→ K is non-expansive, i.e.,

‖PK(v)− PK(w)‖ ≤ ‖v − w‖, ∀v, w ∈ V;

(ii) PK is firmly non-expansive, i.e.,

‖PK(v)− PK(w)‖2 ≤ 〈PK(v)− PK(w), v − w〉 ∀v, w ∈ V;

(iii) for each v ∈ V,

u = PK(v)⇔ 〈v − u, u− w〉 ≥ 0, ∀w ∈ K.

Definition 2.5.([14]) Let N : V → 2V be a multi-valued maximal monotone map-
ping, then the single valued resolvent operator is defined as:

JNη (v) = [I + ηN]−1(v), ∀v ∈ V.

Here η ∈ R+ and I is the identity mapping.

Remark 2.2. The resolvent operator JNη has the following properties:

(i) it is single valued and non-expansive, i.e.,

‖JNη (v)− JNη (w)‖ ≤ ‖v − w‖, ∀v, w ∈ V and for η ∈ R+;

(ii) it is 1-inverse strongly monotone, i.e.,

‖JNη (v)− JNη (w)‖2 ≤ 〈v − w, JNη (v)− JNη (w)〉, ∀v, w ∈ V.
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Definition 2.6. Let N : V → 2V be a multi-valued maximal monotone mapping
and JNη be the resolvent operator associated with it, then the Cayley operator CN

η

is defined as:

(2.1) CN
η (v) = [2JNη (v)− I], ∀v ∈ V.

Remark 2.3. Using Remark 2.2, it can be easily seen that the Cayley operator
CN
η is 3-Lipschitz continuous.

In short, we denote it by C, i.e., C(v) = CN
η (v). Let N : V → 2V be a multi-

valued maximal monotone mapping, JNη be the resolvent operator associated with

it and CN
η be the Cayley operator, then Cayley inclusion problem is to find v ∈ V

such that

0 ∈ CN
η (v) + N(v).

Or in short it can be written as

(2.2) 0 ∈ C(v) + N(v).

Lemma 2.3.([4]) Let N : V→ 2V be a maximal monotone mapping and B : V→ V

be a Lipschitz continuous mapping. Then a mapping B + N : V→ 2V is a maximal
monotone mapping.

In view of Remark 2.3 and Lemma 2.3, we can see that C + N : V→ 2V, where
C is a Cayley operator given by (2.1) is a maximal monotone. So a new resolvent
operator can be defined as follows.

Definition 2.7. Let N : V→ 2V be a maximal monotone mapping and C : V→ V

be a cayley operator given by equation (2.1) which is Lipschitz continuous, so that
C + N : V → 2V is also a maximal monotone mapping. A new resolvent operator
associated with C + N is defined as:

(2.3) JC+N
η (v) = [I + η(C + N)]−1(v) ∀v ∈ V.

Remark 2.4. The resolvent operator JC+N
η is also non-expansive and 1-inverse

strongly monotone.

3. Main Result

In this section, we will discuss an algorithm for obtaining common solutions to
the problems (1.2) and (2.2). Before going to the main result, we first state the
Lemma which is used in the main result.

Lemma 3.1. v ∈ V is a solution of variational inclusion problem (2.2) iff v =
JC+N
η (v), ∀ η ∈ R+.
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Proof. If v ∈ V is a solution of problem (2.2), then for η ∈ R+,

0 ∈ (C + N)v ⇔ 0 ∈ η(C + N)v

⇔ v ∈ [1 + η(C + N)v]

⇔ v = [1 + η(C + N)]−1(v) = JC+N
η (v). 2

Using Lemma 3.1, we develop the following iterative algorithm for obtaining
common solutions to problems (1.2) and (2.2).

Algorithm : Let N : V→ 2V be a multi-valued maximal monotone mapping, JNη be
the resolvent operator associated with it, C be the Cayley operator and S : V → V

be a non-expansive mapping, then let

(3.1)

{
vm+1 = βmv + (1− βm)S(wm),

wm = JC+N
η (vm), m = 0, 1, 2, · · · .

Now we state and prove our main result in which we show that the sequence {vm}
generated by (3.1) under certain conditions converges strongly to common solutions
to the problems (1.2) and (2.2).

Theorem 3.1. Let V be a Hilbert space, N : V → 2V be a multi-valued maximal
monotone mapping, C be the Cayley operator given by (2.1), which is Lipschitz
continuous so that C + N : V→ 2V is a maximal monotone mapping by Lemma 2.3
and S : V→ V be a non-expansive mapping. Let F (S)∩ V I(I,C + N) 6= φ. Suppose
v0 ∈ V and {vm} be the sequence given by (3.1) with the following conditions:

(i) limm→∞ βm = 0;
∑∞
m=0 βm =∞;

(ii)
∑∞
m=0 |βm+1 − βm| <∞.

Then {vm} converges strongly to F (S) ∩ V I(I,C + N).

Proof. We prove the theorem in six steps.
Step 1 : First we show that the sequences {vm} and {wm} are bounded.
For z ∈ F (S) ∩ V I(I,C + N) and from Lemma 3.1, we have

z = JC+N
η (z).

So, we calculate

‖wm − z‖ = ‖JC+N
η (vm)− JC+N

η (z)‖
≤ ‖vm − z‖ ∀m ≥ 0.(3.2)
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Using (3.1) and (3.2), we can write

‖vm+1 − z‖ = ‖βm(v − z) + (1− βm)(Swm
− z)‖

≤ βm‖v − z‖+ (1− βm)‖wm − z‖
≤ βm‖v − z‖+ (1− βm)‖vm − z‖
≤ max {‖v − z‖, ‖vm − z‖}
≤ · · ·
≤ max {‖v − z‖, ‖v0 − z‖}
= ‖v − z‖.(3.3)

From above we conclude that the sequences {vm} and {wm} are bounded. Since S is
non-expansive and C is Lipschitz continuous so {Svm} and {Cwm

} are also bounded
in V.
Step 2 : Here we prove that

(3.4) ‖vm+1 − vm‖ → 0 and ‖wm+1 − wm‖ → 0 as m→∞.

Since resolvent operator given by (2.3) is non-expansive, we calculate

‖wm+1 − wm‖ = ‖JC+N
η (vm+1)− JC+N

η (vm)‖
≤ ‖vm+1 − vm‖.(3.5)

Hence from (3.1) and (3.5), we obtain

‖vm+1 − vm‖ = ‖βmv + (1− βm)Swm − (βm−1v + (1− βm−1)Swm−1)‖
= ‖(βm − βm−1)(v − Swm−1) + (1− βm)(Swm − Swm−1)‖
≤ |βm − βm−1|‖v − Swm−1‖+ (1− βm)‖Swm − Swm−1‖
≤ |βm − βm−1|M + (1− βm)‖wm − wm−1‖
≤ |βm − βm−1|M + (1− βm)‖vm − vm−1‖.(3.6)

Here M = supm≥1 ‖v − Swm−1‖. We see that all the conditions of Lemma 2.1 are
satisfied by taking em = ‖vm − vm−1‖, fm = 0 and gm = |βm − βm−1|M and so
‖vm+1 − vm‖ → 0 as m→∞. From (3.5) ‖wm+1 − wm‖ → 0 as m→∞.
Step 3 : Here we prove that for z ∈ F (S) ∩ V I(I,C + N),

(3.7) ‖vm − Swm
‖ → 0 as m→∞.

‖vm − Swm
‖ ≤ ‖vm − Swm−1

‖+ ‖Swm−1
− Swm

‖
≤ βm−1‖v − Swm−1

‖+ ‖wm−1 − wm‖.(3.8)

Since βm → 0 and ‖wm−1 − wm‖ → 0, therefore ‖vm − Swm
‖ → 0.

Step 4 : Here we prove that

(3.9) ‖vm − wm‖ → 0; ‖Swm − wm‖ → 0.
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For z ∈ F (S) ∩ V I(I,C + N) and using Remark 2.4, we obtain

‖wm − z‖2 = ‖JC+N
η (vm)− JC+N

η (z)‖2

≤ 〈vm − z, wm − z〉

=
1

2

{
‖vm − z‖2 + ‖wm − z‖2 − ‖vm − z − (wm − z)‖2

}
≤ 1

2

{
‖vm − z‖2 + ‖vm − z‖2 − ‖vm − wm‖2

}
.

So, we get

(3.10) ‖wm − z‖2 ≤ ‖vm − z‖2 −
1

2
‖vm − wm‖2.

So, using (3.1) and (3.10), we have

‖vm+1 − z‖2 = ‖βm(v − z)− (1− βm)(Swm
− z)‖2

≤ βm‖v − z‖2 + (1− βm)‖Swm − z‖2

≤ βm‖v − z‖2 + (1− βm)‖wm − z‖2

≤ βm‖v − z‖2 + (1− βm)

{
‖vm − z‖2 −

1

2
‖vm − wm‖2

}
.

This implies that

(3.11)
(1− βm)

2
‖vm − wm‖2 ≤ βm‖v − z‖2 + (‖vm − z‖2 − ‖vm+1 − z‖2).

Since βm → 0 and

|‖vm − z‖2 − ‖vm+1 − z‖2| ≤ ‖vm+1 − vm‖(‖vm‖+ ‖vm+1‖)→ 0.

So, from (3.11), ‖vm − wm‖ → 0. Also from (3.7), we obtain

‖Swm − wm‖ ≤ ‖Swm − vm‖+ ‖vm − wm‖ → 0.

Step 5 : Here we prove that

(3.12) lim sup
m→∞

〈v − q, Swm
− q〉 ≤ 0,

here q = PF (S)∩V I(I,C+N)v.
Since {wm} is a bounded sequence in V, so there exists a subsequence {wmi

} ⊂
{wm} such that wmi

⇀ w ∈ V and

(3.13) lim sup
m→∞

〈v − q, Swm − q〉 = lim
mi→∞

〈v − q, Swmi
− q〉.
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Since ‖Swm
−wm‖ → 0, ‖Swmi

−wmi
‖ → 0, S is non-expansive hence I−S : V→ V

is semi-closed, so S(w) = w, i.e., w ∈ F (S).
Now we prove that

(3.14) w ∈ V I(I,C + N).

Since Cayley operator C is Lipschitz continuous and N is maximal monotone, there-
fore by Lemma 2.3 C + N is maximal monotone. Let (a, b) ∈ Graph(C + N), i.e.,
b ∈ (C + N)(a). Since wmi

= JC+N
η (vmi

), we have vmi
∈ [I + (C + N)](wmi

), i.e.,

1

η
(vmi

− wmi
) ∈ (C + N)(wmi

).

So, by maximal monotonicity (C + N), we have〈
a− wmi

, b− 1

η
(vmi

− wmi
)

〉
≥ 0.

So

(3.15) 〈a− wmi
, b〉 ≥

〈
a− wmi

,
1

η
(vmi

− wmi
)

〉
.

Since ‖vmi
− wmi

‖ → 0 and wmi
⇀ w, we get

lim
mi→∞

〈a− wmi
, b〉 = 〈a− w, b〉 ≥ 0.

Because C + N is maximal monotone, this implies that 0 ∈ (C + N)(w), i.e., w ∈
V I(I,C + N). So w ∈ F (S) ∩ V I(I,C + N).

Since ‖Swm
− wm‖ → 0 and wmi

⇀ w ∈ F (S) ∩ V I(I,C + N), so from (3.13)
and Remark 2.1, we get

lim sup
m→∞

〈v − q, Swm
− q〉 = lim

mi→∞
〈v − q, Swmi

− q〉

= lim
mi→∞

〈v − q, Swmi
− wmi

+ wmi
− q〉

= lim
mi→∞

〈v − q, w − q〉 ≤ 0.

Hence (3.12) is proved.
Step 6 : Finally we prove that

(3.16) vm → q = PF (S)∩V I(I,C+N)(v0).

Using (3.1), (3.2) and Lemma 2.2, we obtain

‖vm+1 − q‖2 = ‖βm(v − q) + (1− βm)(Swm − q)‖2

≤ (1− βm)2‖(Swm
− q)‖2 + 2βm〈v − q, vm+1 − q〉

≤ (1− βm)2‖wm − q)‖2 + 2βm〈v − q, vm+1 − q〉
≤ (1− βm)2‖vm − q)‖2 + 2βm〈v − q, vm+1 − q〉.(3.17)
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Let

γm = max {0, 〈v − q, vm+1 − q〉} .

Then γm ≥ 0.

Now we prove that γm → 0.

From (3.12), it follows that for given δ > 0, there exists m0 such that

〈v − q, vm+1 − q〉 < δ.

So, we have

0 ≤ γm < δ, ∀m ≥ m0.

By the arbitrariness of δ > 0, we get γm → 0. So we can write (3.17) as follows;

(3.18) ‖vm+1 − q‖2 ≤ (1− βm)2‖vm − q)‖2 + 2βmγm.

By taking em = ‖vm+1 − q‖2, fm = 2βmγm and gm = 0, all the conditions of the
Lemma 2.1 are satisfied. Hence vm → q as m→∞. This proves our theorem. 2

4. Numerical Example

Example 4.1. Let V = R, the set of reals and let N : R → 2R, be defined
as N(v) = { 15 (v)} ∀ v ∈ R, then we calculate resolvent operator JNη (v), Cayley

operator CN
η (v) and new resolvent operator JC+N

η (v) for η = 1 as

JNη (v) = [I + ηN]−1(v) =
5

6
v.

CN
η (v) = [2JNη (v)− I] =

4

6
v.

JC+N
η (v) = [I + η(C + N)]−1(v) =

15

28
v.

Let S : R → R be defined as S(v) = v and βm = 1
m . Then all the conditions of

Theorem 3.1 are satisfied and we can calculate

vm+1 =
1

m
v0 +

(m− 1)

m

15

28
v.

All codes are written in MATLAB 2012. We have taken different initial values
V0 = 1, 3.5, 5.0, which show that the sequence {vm} converges to the solution of the
problem. The convergence graph is shown Figure 1.
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Figure 1: Convergence of {vm} by using Algorithm 3.1
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