• Title/Summary/Keyword: Resistance marker

Search Result 351, Processing Time 0.036 seconds

Breeding Hybrid Rice with Genes Resistant to Diseases and Insects Using Marker-Assisted Selection and Evaluation of Biological Assay

  • Kim, Me-Sun;Ouk, Sothea;Jung, Kuk-Hyun;Song, Yoohan;Le, Van Trang;Yang, Ju-Young;Cho, Yong-Gu
    • Plant Breeding and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.272-286
    • /
    • 2019
  • Developing elite hybrid rice varieties is one important objective of rice breeding programs. Several genes related to male sterilities, restores, and pollinators have been identified through map-based gene cloning within natural variations of rice. These identified genes are good targets for introducing genetic traits in molecular breeding. This study was conducted to breed elite hybrid lines with major genes related to hybrid traits and disease/insect resistance in 240 genetic resources and F1 hybrid combinations of rice. Molecular markers were reset for three major hybrid genes (S5, Rf3, Rf4) and thirteen disease/insect resistant genes (rice bacterial blight resistance genes Xa3, Xa4, xa5, Xa7, xa13, Xa21; blast resistance genes Pita, Pib, Pi5, Pii; brown planthopper resistant genes Bph18(t) and tungro virus resistance gene tsv1). Genotypes were then analyzed using molecular marker-assisted selection (MAS). Biological assay was then performed at the Red River Delta region in Vietnam using eleven F1 hybrid combinations and two control vatieties. Results showed that nine F1 hybrid combinations were highly resistant to rice bacterial blight and blast. Finally, eight F1 hybrid rice varieties with resistance to disease/insect were selected from eleven F1 hybrid combinations. Their characteristics such as agricultural traits and yields were then investigated. These F1 hybrid rice varieties developed with major genes related to hybrid traits and disease/insect resistant genes could be useful for hybrid breeding programs to achieve high yield with biotic and abiotic resistance.

Genetics of Fusarium Wilt Resistance in Pigeonpea (Cajanus cajan) and Efficacy of Associated SSR Markers

  • Singh, Deepu;Sinha, B.;Rai, V.P.;Singh, M.N.;Singh, D.K.;Kumar, R.;Singh, A.K.
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Inheritance of resistance to Fusarium wilt (FW) disease caused by Fusarium udum was investigated in pigeonpea using four different long duration FW resistant genotypes viz., BDN-2004-1, BDN-2001-9, BWR-133 and IPA-234. Based on the $F_2$ segregation pattern, FW resistance has been reported to be governed by one dominant gene in BDN-2004-1 and BDN-2001-9, two duplicate dominant genes in BWR-133 and two dominant complimentary genes in resistance source IPA-234. Further, the efficacy of six simple sequence repeat (SSR) markers namely, ASSR-1, ASSR-23, ASSR-148, ASSR-229, ASSR-363 and ASSR-366 reported to be associated with FW resistance were also tested and concluded that markers ASSR-1, ASSR-23, ASSR-148 will be used for screening of parental genotypes in pigeonpea FW resistance breeding programs. The information on genetics of FW resistance generated from this study would be used, to introgress FW resistance into susceptible but highly adopted cultivars through marker-assisted backcross breeding and in conventional breeding programs.

A Study on the Bow Wave Characteristics for the Resistance-Minimized Hull Form of Small Fishing Boat (저항최소화 소형 어선선형의 선수파 특성에 관한 연구)

  • Yu, Jin-Won;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.124-131
    • /
    • 2008
  • This paper presents the analysis of resistance performance and bow waves for the resistance-minimized hull form of small fishing boat by using numerical simulations and model tests. The resistance-minimized hull form is developed from an original hull form which is selected from existing small fisher boats in our country. In order to estimate the resistance performance for the original and the developed hull form, several numerical simulations and model tests are carried out. Marker and Cell(MAC) method and Marker-Density method are adopted to simulate the free-surface bow waves around advancing hull surface. The results of numerical simulations are compared with the model tests in towing tank. The results show that the resistance performance of the resistance-minimized hull form is improved than that of the original hull form. The results of this study will be a good guide to the hull form development of small fishing boats in future.

Development of Cleaved Amplified Polymorphic Sequence (CAPS) Marker for Selecting Powdery Mildew-Resistance Line in Strawberry (Fragaria×ananassa Duchesne) (딸기 흰가루병 저항성 계통 선발을 위한 분자마커 개발)

  • Je, Hee-Jeong;Ahn, Jae-Wook;Yoon, Hae-Suk;Kim, Min-Keun;Ryu, Jae-San;Hong, Kwang-Pyo;Lee, Sang-Dae;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.722-729
    • /
    • 2015
  • Powdery mildew (PM) caused by Podosphaera aphanis is a major disease that can result in significant yield losses in strawberry (Fragaria ${\times}$ ananassa Duchesne). For preventing PM, pesticides are usually applied in strawberry. In this study, molecular markers were developed to increase breeding efficiency of PM-resistance cultivars by marker-assisted selection (MAS). An $F_2$ population derived from a cross between PM-resistance 'Seolhyang' and PM-susceptibility 'Akihime' was evaluated for disease resistance to PM and RAPD (random amplification of polymorphic DNA)-BSA (bulked segregant analysis). Among 200 RAPD primers tested, OPE10 primer amplified a 311bp-band present in with 331bp. Sequence alignment performed for searching polymorphisms and six single nucleotide polymorphism (SNP) were found in amplified regions. To develop polymorphic marker for distinguishing between resistant and susceptible, RAPD was converted to cleaved amplified polymorphic sequence (CAPS) marker. Among restriction enzymes associated with six SNPs, Eae I (Y/GGCCR) was successfully digested to 231bp in susceptible. The results suggest that the selected CAPS marker could be used for increasing efficiency of selecting powdery mildew resistant strawberry in breeding system.

Linkage Analysis of the Resistance Genes to Whitebacked Planthopper (Sogatella furcifera Horvath) in Rice (수도의 흰등멸구(Sogatella furcifera Horvath)에 대한 저항성 유전자 연관분석)

  • ;Mun-Hue Heu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.2
    • /
    • pp.136-151
    • /
    • 1984
  • The purpose of this study is to find out the linkage relationship of the resistance genes Wbph1 and Wbph2 which are known to be present in the rice cultivar N22 and ARC 10239 respectively, with the genetic markers which are identified as the specific linkage tester. Crosses were made between the resistant parents and the genetic marker stocks and their F$_2$ populations were grown out in the field. The genetic segregations of the marker character were studied and the seeds were harvested individual plant base. These F$_3$ seeds were grown into plant-line base in the greenhouse and their responses to the whitebacked planthopper were tested. Then the linkage relationship between the F$_2$ plant marker character and the F$_3$ resistance responses to the whitebacked planthopper were examined. In the F$_2$ generation of the crosses between the resistant parent N22 and the genetic marker stocks, the genetic markers, such as lg, d-t, g, la, bl and gl, showed the segregation of 3 dominance to 1 recessiveness, and the Bh marker segregated into 9:7 ratio. Another 4 marker genes, such as Cl, gh, Lh and bc, did not show the good fittness to the expected value. In the F$_2$ generation of the crosses between the resistant parent ARC 10239 and the genetic marker stocks, the genetic markers, such as Cl, lg, Pn, g, la, bl and gl, showed the segregation of 3 dominance to 1 recessiveness, and the Bh gene segregation fitted well to the 9:7. The rest 4 genetic markers, such as gh, Lh, nl and be, did not show the good fitness to the expected ratio. The resistance genes Wbphl of N22 and the Wbph2 of ARC 10239 appeared to be single dominant gene each. The Wbphl gene was linked with the marker gene, liguleless (lg) of linkage group II with the recombination value of 36.8%, and with the black hull (Bh) with the value of 35.9%. The Wbph2 gene appeared to be independent of all the markers tested here, such as Cl, lg, Pn, g, Lh, la, nl, bl, bc, gl, Bh, of linkage gtoup I, II, III, IV, VI, VII, VIII, IX, X, XI, and XII respectively. That the Wbph2 linkage relations were not investigated was regarded as the causes that the tested marker genes on the chromosome were located with the resistance gene at the distant loci, and of the phenctypic properties of the marker characters. The Wbph2 linkage relations should be reexamined in the cross combinations of linkage group Ⅶ, Ⅷ, Ⅹ and XII including linkage group V which was not tested in this experiment.

  • PDF

Analysis of Korean japonica rice cultivars using molecular markers associated with blast resistance genes

  • Suh, Jung-Pil;Roh, Jae-Hwan;Cho, Young-Chan;Han, Seong-Sook;Jeon, Yong-Hee;Kang, Kyung-Ho;Kim, Yeon-Gyu
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.215-222
    • /
    • 2008
  • Fifty-two Korean japonica rice cultivars were analyzed for leaf blast resistance and genotyped with 4 STS and 26 SSR markers flanking the specific chromosome sites linked with blast resistance genes. In our analysis of resistance genes in 52 japonica cultivars using STS markers tightly linked to Pib, Pita, Pi5(t) and Pi9(t), the blast nursery reaction of the cultivars possessing the each four major genes were not identical to that of the differential lines. Eight of the 26 SSR markers were associated with resistant phenotypes against the isolates of blast nursery as well as the specific Korean blast isolates, 90-008 (KI-1113), 03-177 (KJ-105). These markers were linked to Pit, Pish, Pib, Pi5(t), Piz, Pia, Pik, Pi18, Pita and Pi25(t) resistance gene loci. Three of the eight SSR markers, MRG5836, RM224 and RM7102 only showed significantly associated with the phenotypes of blast nursery test for two consecutive years. These three SSR markers also could distinguish between resistant and susceptible japonica cultivars. These results demonstrate the usefulness of marker-assisted selection and genotypic monitoring for blast resistance of rice in blast breeding programs.

Identification of Quantitative Trait Loci for Resistance to Soybean Cyst Nematode Race 5 (콩 Cyst 선충 Race 5에 대한 저항성 QTL 탐색)

  • Choi, In-Soo;Kim, Yong-Chul;Kim, Sung-Man;Lee, Chung-Yeol;Park, Hyean-Cheal;Halina T. Skorupska
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.712-721
    • /
    • 1997
  • The objectives of this study were; (1) to identify and localize QTLs for resistance to soybean cyst nematode(SCN) race 5 on RAPD map, (2) to idntify the magnitude and mode of inheritance for each QTL, and (3) to identify the best combinations of QTLs for resistance to SCN race 5. Based on the univariate regression analysis, we detected 26 markers(22 RAPD and 4 RFLP) which showed significant association(P<0.05) with resistance to SCN race 5. From MAPMAKER /QTL analysis, we identified two regions (LGC-20 and Group 2) for resistance to SCN race 5. The QTL that was localized at 8.0 cM from pK418C on LGC-20 showed a recessive mode of inheritance and the QTL that was localized between W03 and E02$^3$ on Group 2 showed a dominant mode of inheritance. Two pairs of flanking markers (E02$^3$ and W03, pK418C and pK418E$_1$) and one unlinked RAPD marker, G10$^1$ were used for multiple regression analysis. Marker combination which was composed of 4 markers, E02$^3$, G10$^1$, W03, and pK418E$_1$, explained the highest amount of phenotypic variation by SCN (35.2%). Further research for the identification of QTLs for resistance to SCN race 5 to explain larger portion of phenotypic variation is needed.

  • PDF

Monitoring antimalarial drug-resistance markers in Somalia

  • Abdifatah Abdullahi Jalei;Kesara Na-Bangchang;Phunuch Muhamad;Wanna Chaijaroenkul
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.78-83
    • /
    • 2023
  • The use of an effective antimalarial drug is the cornerstone of malaria control. However, the development and spread of resistant Plasmodium falciparum strains have placed the global eradication of malaria in serious jeopardy. Molecular marker analysis constitutes the hallmark of the monitoring of Plasmodium drug-resistance. This study included 96 P. falciparum PCR-positive samples from southern Somalia. The P. falciparum chloroquine resistance transporter gene had high frequencies of K76T, A220S, Q271E, N326S, and R371I point mutations. The N86Y and Y184F mutant alleles of the P. falciparum multidrug resistance 1 gene were present in 84.7 and 62.4% of the isolates, respectively. No mutation was found in the P. falciparum Kelch-13 gene. This study revealed that chloroquine resistance markers are present at high frequencies, while the parasite remains sensitive to artemisinin (ART). The continuous monitoring of ART-resistant markers and in vitro susceptibility testing are strongly recommended to track resistant strains in real time.

Screening of RAPD Markers for Fluoride Resistance in Bombyx mori L.

  • Chen, Keping;Yao, Qin;Li, Muwang;Wang, ong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.1
    • /
    • pp.11-14
    • /
    • 2003
  • NF733xin, the near allele line was obtained by means of crossing and backcrossing the silkworm race T6, which contained fluoride resistance major gene, to race 733xin, which was highly susceptible to fluoride toxicity. Two hundred RAPD random primers were used in the RAPD analysis of these 3 strains. Two molecular markers, OPB-08850 and OPB-10917, were obtained. OPB-10917 was used to detect the backcross generations. It was found that all the fluoride resistant individuals in each backcross generation had the same special band. These results proved that this marker was reliable.

Development of Molecular Markers Conferring Bacterial Leaf Pustule Resistance Gene, rxp, using Resistant and Susceptible Cultivars in Soybean (콩 불마름병 저항성 및 감수성 품종을 이용한 rxp 유전자 근접 분자표지 개발)

  • Yang, Kiwoung;Lee, Yeong Hoon;Ko, Jong Min;Jeon, Myeong Gi;Lee, Byong Won;Kim, Hyun Tae;Yun, Hong Tae;Jung, Chan Sik;Baek, In Youl
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.282-287
    • /
    • 2011
  • Bacterial pustule (BP) is a leaf disease of soybean that is most common in Korea. Inoculation of 8ra, pathogen strain, to resistant and susceptible cultivars for finding the BP resistance gene (rxp) was much tried but the sequence of the exact gene is not found. This research performed in order to confirm the rxp gene near molecular marker by using the resistant and susceptible cultivars. Soybean BP resistance gene which related to region of near molecular marker could select the resistant cultivar. For the near molecular marker of rxp, reference genomics data available at sequenced Phytozome was used for designing molecular markers. The rxp was mapped between Satt372 and Satt486 on chromosome 17. According to previous study, rxp released in find mapping 7.2 Mbp to 7.3 Mbp on chromosome 17. In this study, we developed 3 random markers near from 6.6 Mbp to 7.3 Mbp on chromosome 17 identified to increase the genetic resolution of the rxp gene region using resistant and susceptible cultivars. Particularly, Rxp17-700 marker was mostly coincided resistance and susceptible genotype to rxp. This result suggests that Rxp17-700 marker will be more tightly linked to rxp gene.