DOI QR코드

DOI QR Code

Monitoring antimalarial drug-resistance markers in Somalia

  • Abdifatah Abdullahi Jalei (Chulabhorn International College of Medicine, Thammasat University) ;
  • Kesara Na-Bangchang (Chulabhorn International College of Medicine, Thammasat University) ;
  • Phunuch Muhamad (Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University) ;
  • Wanna Chaijaroenkul (Chulabhorn International College of Medicine, Thammasat University)
  • Received : 2022.10.12
  • Accepted : 2023.01.16
  • Published : 2023.02.28

Abstract

The use of an effective antimalarial drug is the cornerstone of malaria control. However, the development and spread of resistant Plasmodium falciparum strains have placed the global eradication of malaria in serious jeopardy. Molecular marker analysis constitutes the hallmark of the monitoring of Plasmodium drug-resistance. This study included 96 P. falciparum PCR-positive samples from southern Somalia. The P. falciparum chloroquine resistance transporter gene had high frequencies of K76T, A220S, Q271E, N326S, and R371I point mutations. The N86Y and Y184F mutant alleles of the P. falciparum multidrug resistance 1 gene were present in 84.7 and 62.4% of the isolates, respectively. No mutation was found in the P. falciparum Kelch-13 gene. This study revealed that chloroquine resistance markers are present at high frequencies, while the parasite remains sensitive to artemisinin (ART). The continuous monitoring of ART-resistant markers and in vitro susceptibility testing are strongly recommended to track resistant strains in real time.

Keywords

Acknowledgement

We thank all the patients who participated in the study. Special thanks go to the staff of Balad Hospital and Afgoi General Hospital, especially Mr. Mohamed Omar, Mr. Ahmed Hersi, and Ms. Fartun Mohamed, for their assistance in sample collection. We also thank Chulabhorn International College of Medicine of Thammasat University, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma of Thammasat University, for the support of this research. Kesara Na-Bangchang is supported by the National Research Council of Thailand under the Research Team Promotion grant (grant number NRCT 820/2563).

References

  1. Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011;24(2):377-410. https://doi.10.1128/CMR.00051-10
  2. Jalei AA, Chaijaroenkul W, Na-Bangchang K. Plasmodium falciparum drug resistance gene status in the Horn of Africa: a systematic review. Afr J Pharm Pharmacol 2018;12(25):361-373. https://doi.org/10.5897/AJPP2018.4942
  3. World Health Organization. Guidelines for the Treatment of Malaria. World Health Organization. Geneva, Switzerland. 2015. https://apps.who.int/iris/handle/10665/162441
  4. Warsame M, Atta H, Klena JD, Waqar BA, Elmi HH, et al. Efficacy of monotherapies and artesunate-based combination therapies in children with uncomplicated malaria in Somalia. Acta Trop 2009;109(2):146-151. https://doi.10.1016/j.actatro-pica.2008.10.009
  5. Warsame M, Hassan AH, Hassan AM, Arale AM, Jibril AM, et al. Efficacy of artesunate+ sulphadoxine/pyrimethamine and artemether+ lumefantrine and dhfr and dhps mutations in Somalia: evidence for updating the malaria treatment policy. Trop Med Int Health 2017;22(4):415-422. https://doi.10.1111/tmi.12847
  6. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014;505(7481):50-55. https://doi.10.1038/nature12876
  7. Ndwiga L, Kimenyi KM, Wamae K, Osoti V, Akinyi M, et al. A review of the frequencies of Plasmodium falciparum Kelch 13 artemisinin resistance mutations in Africa. Int J Parasitol Drugs Drug Resist 2021;16:155-161. https://doi.org/10.1016/j.ijpddr.2021.06.001
  8. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 2001;344(4):257-263. https://doi.10.1056/NEJM200101253440403
  9. Jambou R, Legrand E, Niang M, Khim N, Lim P, et al. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 2005;366(9501):1960-1963. https://doi.org/10.1016/S0140-6736(05)67787-2
  10. Win AA, Imwong M, Kyaw MP, Woodrow CJ, Chotivanich K, et al. K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar. Malar J 2016;15:1-7. https://doi.10.1186/s12936-016-1147-3
  11. Nsanzabana C, Ariey F, Beck HP, Ding XC, Kamau E, et al. Molecular assays for antimalarial drug resistance surveillance: a target product profile. PLoS One 2018;13(9):e0204347. https://doi.10.1371/journal.pone.0204347
  12. Shafik SH, Cobbold SA, Barkat K, Richards SN, Lancaster NS, et al. The natural function of the malaria parasite's chloroquine resistance transporter. Nat commun 2020;11(1):1-16. https://doi.10.1038/s41467-020-17781-6
  13. Durrand V, Berry A, Sem R, Glaziou P, Beaudou J, et al. Variations in the sequence and expression of the Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and their relationship to chloroquine resistance in vitro. Mol Biochem Parasitol 2004; 136(2):273-285. https://doi.10.1016/j.molbiopara.2004.03.016
  14. Mwai L, Ochong E, Abdirahman A, Kiara SM, Ward S, et al. Chloroquine resistance before and after its withdrawal in Kenya. Malar J 2009;8:1-10. https://doi.10.1186/1475-2875-8-106
  15. Ikegbunam MN, Nkonganyi CN, Thomas BN, Esimone CO, Velavan TP, et al. Analysis of Plasmodium falciparum Pfcrt and Pfmdr1 genes in parasite isolates from asymptomatic individuals in Southeast Nigeria 11 years after withdrawal of chloroquine. Malar J 2019;18(1):1-7. https://doi.10.1186/s12936-019-2977-6
  16. Veiga MI, Dhingra SK, Henrich PP, Straimer J, Gnadig N, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun 2016;7:1-12. https://doi.10.1038/ncomms11553
  17. Kavishe RA, Paulo P, Kaaya RD, Kalinga A, van Zwetselaar M, et al. Surveillance of artemether-lumefantrine associated Plasmodium falciparum multidrug resistance protein-1 gene polymorphisms in Tanzania. Malar J 2014;13:1-6. https://doi.10.1186/1475-2875-13-264
  18. Ngalah BS, Ingasia LA, Cheruiyot AC, Chebon LJ, Juma DW, et al. Analysis of major genome loci underlying artemisinin resistance and pfmdr1 copy number in pre-and post-ACTs in western Kenya. Sci Rep 2015;5:1-6. https://doi.10.1038/srep08308
  19. Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, et al. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J 2016;15:1-6. https://doi.10.1186/s12936-016-1095-y