• Title/Summary/Keyword: Reduction device

Search Result 1,288, Processing Time 0.032 seconds

Efficiency Improvement of Organic Solar Cells Using Two-step Annealing Technique

  • Masood, Bilal;Haider, Arsalan;Nawaz, Tehsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.134-138
    • /
    • 2016
  • The fullerene solar cells are becoming a feasible choice due to the advanced developments in donor materials and improved fabrication techniques of devices. Recently, sufficient optimization and improvements in the processing techniques like incorporation of solvent vapor annealing (SVA) with additives in solvents has become a major cause of prominent improvements in the performance of organic solar cell-based devices . On the other hand, the challenge of reduced open circuit voltage (Voc) remains. This study presents an approach for significant performance improvement of overall device based on organic small molecular solar cells (SMSCs) by following a two step technique that comprises thermal annealing (TA) and SVA (abbreviated as SVA+TA). In case of exclusive use of SVA, reduction in Voc can be eliminated in an effective way. The characteristics of charge carriers can be determined by the measurement of transient photo-voltage (TPV) and transient photo-current (TPC) that determines the scope for improvement in the performance of device by two step annealing. The recovery of reduced Voc is linked with the necessary change in the dynamics of charge that lead to increased overall performance of device. Moreover, SVA and TA complement each other; therefore, two step annealing technique is an appropriate way to simultaneously improve the parameters such as Voc, fill factor (FF), short circuit current density (Jsc) and PCE of small molecular solar cells.

Estimation Method of Noise Reducing Devices Installed on the Noise Barrier(I) - Estimation by Sound Intensity - (방음벽 상단소음저감장치의 성능평가 방법에 관한 연구(I) - 음향인텐시티에 의한 평가 -)

  • Kim, Chul-Hwan;Chang, Tae-Sun;Lee, Ki-Jung;Kang, Hee-Man;Lee, Soo-Il;Chang, Seo-Il;Kim, Bong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1053-1056
    • /
    • 2007
  • The acoustical performance of noise reducing devices installed on the top of a noise barrier were tested by small-scale outdoor tests. Noise measurements before and after installation of the devices were carried out using sound intensity methods. It is well known that the sound intensity method can specify the strength and directivity of sound, and it is convenient to consider the feature of sound around a noise barrier. The noise reduction effect of each edge device was evaluated using the difference between the input and output sound power levels calculated from sound intensities. It was investigated that each device had different efficiency in the shadow zone, while there was no significant difference between edge devices in the illuminated zone.

  • PDF

A study on gas vent control of injection mold for the production of precision medical device parts (정밀 의료기기 부품 생산을 위한 사출금형의 가스벤트 제어에 관한 연구)

  • Lee, Jeong-Won;Son, Min-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.34-41
    • /
    • 2020
  • Typical characteristics of medical device parts are that they can not be reused and there are many disposable products. Therefore, there is a need for an injection molding machine having excellent repeatability of molding conditions and a precision injection mold for mass production. Recently, the performance of an injection machine has made a remarkable evolution compared to the past. However, defects such as short-shot, flash, weld line, gas burning, warpage, and deformation, which are typical defects, still do not disappear at all. This is due to the lack of gas ventilation from the product cavities, even if the gas is smoothly vented from the sprue and runner of the mold. For this reason, the internal pressure of the cavity rises and is directly connected to the quality defects. In this study, an active gas vent system was designed to prevent defects due to trapped gas in the cavity. Since it can be easily adjustable in response to the molding conditions and the mold temperature changes, it is expected to improve productivity due to the reduction of the defective ratio.

A Study on the Apparatus for Improving Boiler Efficiency (보일러의 효율향상(效率向上)을 위한 연소보조장치(燃燒補助裝置)에 관(關)한 연구(硏究) (연소실(練燒室) 모형(模型) 실험(實驗)))

  • Seoh, J.I.;Cho, J.H.;Lee, C.S.;Jo, J.C.
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.11-20
    • /
    • 1982
  • This paper presents the experimental investigations of a system as a second treatment means to increase boiler efficiency and heat transfer from combustion gas to heating surfaces in the case of spray combustion. In order to reburn residual combustible components accelerate the burning rate of sprayed fuel droplets, improve the diffusion flame and delay the residence time of the flame, advice with slit type nozzles for spouting preheated supplementary air is used in this study. In the experiment, boiler efficiency and smoke concentration in the exhaust gas at given conditions are measured in both case of installing and not-installing device in the model of combustion chamber which was designed to be equipped with five surfaces. The results obtained in this experiment are as follows ; 1. The optimum values of air rate ${\lambda}$ are about 1.3 in both case. 2. The exhaust gas temperature in the case with device increases about $30{\sim}70^{\circ}C$ above that of the case without the device. 3. Boiler efficiency and reduction effect of smoke emissions are improved considerably.

  • PDF

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

Analysis on Temperature Change of Super Changer for the Reduction of Auto Exhausts Gas (자동차 배출가스 저감을 위한 과급기의 온도변화 해석)

  • Lee, Jong-Ho;Kim, Sung-Won;Yoon, Han-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.109-114
    • /
    • 2013
  • Regulations on exhaust emissions for vehicles and ships are reinforced. Therefore, researchers are focus on developing an excellent engine that emits less environmental pollutants and leads to high gas milage. The purpose of this study is to investigate the efficiency of intake super charging system. Super charger is the special device for improving performance of intake system. Futhermore, for reducing exhaust emissions, the examine are performed on the effectiveness of device structures that tow materials for performance improvement. To fulfill the purpose, Super charger materials of aluminum alloy(AL6262) and polycarbonate were selected and then their temperature change of super charger and inhalation efficiency were analyzed by ANSYS program. In addition, it is attempted to apply these results to device development by comparing the results with the real value. As a result, there was less temperature change of super charger in aluminum materials than polycarbonate, and HC and NOx were decreased when the super charger was installed.

The Characteristics of the Composite Ground with Sand Compaction Pile(SCP) using Large Soil Box (대형토조시험을 이용한 모래다짐말뚝이 적용된 복합지반의 침하 및 하중전이특성)

  • Kim, Oo-Seok;Park, Eon-Sang;Kim, Jae-Kwon;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.974-981
    • /
    • 2005
  • Because general laboratory tests for sand compaction pile method including unit-cell test device have fixed outside diameter, as area replacement ratio increase, diameter of sand pile increase. These condition can bring about overestimation of stiffness of composite ground. In addition, existing large soil box which consist of bellows type loading plate can occur serious mistake in checking the amount of drained water because there are additional drainage along the inside wall in device. Overcoming these shortcoming, this paper developed modified large scale soil box consist of piston type load plate. In this study, using this device, series of modified large scale soil box tests were performed, and investigated the settlement and stress transportation characteristics with area replacement ratio in sand compaction pile method.

  • PDF

Characteristic Evaluation of Medical X-Ray Using High-Voltage Generator with Inverter System (인버터방식의 고전압 발생장치를 이용한 의료용 X선 기기의 특성평가)

  • Kim, Young-Pyo;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Medical X-ray has been brought many changes according to the rapid development of high technology. Especially, for high-voltage generator which is the most important in X-ray generation the traditional way is to use high-voltage electric transformers primarily. However, since it is large and heavy and the ripple rate of DC high-voltage applied to X-ray tube is too big, it has a disadvantage of low X-ray production efficiency. To solve these problems, the studies about high-voltage power supply are now proceeding. At present, the high-voltage generator that generates high-voltage by making high frequency using inverter control circuit consisting of semiconductor device is mainly used. High-voltage generator using inverter has advantages in the diagnosis using X-ray including high performance with short-term use, miniaturization of power supply and ripple reduction. In this study, the X-ray high-voltage device with inverter type using pulse width modulation scheme to the control of tube voltage and tube current was designed and produced. For performance evaluation of produced device, the control signal analysis, irradiation dose change and beam quality depending on the load variation of tube voltage and tube current were evaluated.

Estimation Method of Noise Reducing Devices Installed on the Noise Barrier(3) - Suggestion of Test and Estimation Method - (방음벽 상단소음저감장치의 성능평가 방법에 관한 연구(3) - 시험 및 평가방법의 제안 -)

  • Kim, Chul-Hwan;Chan, Tae-Sun;Kang, Hee-Man;Jeon, Ki-Seong;Kim, Dong-Joon;Chang, Seo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.496-499
    • /
    • 2008
  • The noise reducing devices installed on the noise barrier have been developed in many shapes and ways to reduce noise around road traffic areas. In this study, test and estimation method for the noise reducing device witch installed on the top of a noise barrier was suggested. For this, the authors have considered sound power flow around the device and sound pressure levels for the far field area. To estimate the area effect behind the barrier, area average of noise pressure level difference divided by two area, upper and bellow the sight-line. Comparing the attenuation difference of these areas, the tendency of noise reduction effect was studied according to type of noise reducing devices. Compared with noise shielding efficiency of the devices that using equivalent height of a simple barrier calculated by the SoundPlan, the commercial environment noise simulation software.

  • PDF

Gate-to-Drain Capacitance Dependent Model for Noise Performance Evaluation of InAlAs/InGaAs Double-gate HEMT

  • Bhattacharya, Monika;Jogi, Jyotika;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In the present work, the effect of the gate-to-drain capacitance ($C_{gd}$) on the noise performance of a symmetric tied-gate $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ double-gate HEMT is studied using an accurate charge control based approach. An analytical expression for the gate-to-drain capacitance is obtained. In terms of the intrinsic noise sources and the admittance parameters ($Y_{11}$ and $Y_{21}$ which are obtained incorporating the effect of $C_{gd}$), the various noise performance parameters including the Minimum noise figure and the Minimum Noise Temperature are evaluated. The inclusion of gate-to-drain capacitance is observed to cause significant reduction in the Minimum Noise figure and Minimum Noise Temperature especially at low values of drain voltage, thereby, predicting better noise performance for the device.