• Title/Summary/Keyword: Reduced rings and modules

Search Result 6, Processing Time 0.015 seconds

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

FINITELY GENERATED PROJECTIVE MODULES OVER NOETHERIAN RINGS

  • LEE, SANG CHEOL;KIM, SUNAH
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.499-511
    • /
    • 2006
  • It is well-known that every finitely generated torsion-free module over a principal ideal domain is free. This will be generalized. We deal with ideals of the finite, external direct product of certain rings. Finally, if M is a torsion-free, finitely generated module over a reduced, Noetherian ring A, then we prove that Ms is a projective module over As, where $S=A{\setminus}(A)$.

  • PDF

A NOTE ON SIMPLE SINGULAR GP-INJECTIVE MODULES

  • Nam, Sang Bok
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.215-218
    • /
    • 1999
  • We investigate characterizations of rings whose simple singular right R-modules are GP-injective. It is proved that if R is a semiprime ring whose simple singular right R-modules are GP-injective, then the center $Z(R)$ of R is a von Neumann regular ring. We consider the condition ($^*$): R satisfies $l(a){\subseteq}r(a)$ for any $a{\in}R$. Also it is shown that if R satisfies ($^*$) and every simple singular right R-module is GP-injective, then R is a reduced weakly regular ring.

  • PDF

THE TOTAL TORSION ELEMENT GRAPH WITHOUT THE ZERO ELEMENT OF MODULES OVER COMMUTATIVE RINGS

  • Saraei, Fatemeh Esmaeili Khalil
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.721-734
    • /
    • 2014
  • Let M be a module over a commutative ring R, and let T(M) be its set of torsion elements. The total torsion element graph of M over R is the graph $T({\Gamma}(M))$ with vertices all elements of M, and two distinct vertices m and n are adjacent if and only if $m+n{\in}T(M)$. In this paper, we study the basic properties and possible structures of two (induced) subgraphs $Tor_0({\Gamma}(M))$ and $T_0({\Gamma}(M))$ of $T({\Gamma}(M))$, with vertices $T(M){\backslash}\{0\}$ and $M{\backslash}\{0\}$, respectively. The main purpose of this paper is to extend the definitions and some results given in [6] to a more general total torsion element graph case.