FINITELY GENERATED PROJECTIVE MODULES OVER NOETHERIAN RINGS

SANG CHEOL LEE* AND SUNAH KIM

Abstract. It is well-known that every finitely generated torsion-free module over a principal ideal domain is free. This will be generalized. We deal with ideals of the finite, external direct product of certain rings. Finally, if M is a torsion-free, finitely generated module over a reduced, Noetherian ring A, then we prove that M_S is a projective module over A_S , where $S = A \setminus Z(A)$.

0. Introduction

Through out this paper, every *ring* is a commutative ring with an identity element.

Let A be a ring. We adopt the following notations.

- (1) Z(A)= the set of all zero-divisors of A.
- (2) Spec (A) = the set of all prime ideals of A.
- (3) Min (A) = the set of all minimal prime ideals of A.
- (4) Max (A)= the set of all maximal ideals of A.

Received November 7, 2006. Revised December 7, 2006.

2000 Mathematics Subject Classification: 13C10, 13C12

Key words and phrases: Projective modules, Free modules, Ideals, Torsion-free modules

*The first author was supported by research funds of Chonbuk National University in 2004

1. Finitely Generated Torsion-free Modules

Let $R = \mathbb{Z}_6$. Then $3^2 = 3$ in R, so 3 is an idempotent element of R. Let M = R/3R. Then M is a cyclic module over R, so it is a finitely generated multiplication module over R. Moreover, $\operatorname{Ann}_R(M) = 3R$. Then by [S88, Theorem 11], M is a projective R-module. Of course, R is a Noetherian ring.

It is well-known [M97, Theorem 2.4.1, p.19] that every finitely generated torsion-free module over a principal ideal domain is free. This will be generalized below.

Let R_1, R_2, \dots, R_n be rings and let $R = R_1 \times R_2 \times \dots \times R_n$. For each $i \in \{1, 2, \dots, n\}$, let

$$\overline{R_i} = \{0\} \times \cdots \times \{0\} \times R_i \times \{0\} \cdots \times \{0\}.$$

Let i be any element of $\{1, 2, \dots, n\}$. Then $\overline{R}_i \subseteq R$. If n > 1, then the identities of \overline{R}_i and R differ. Hence, if n > 1, then we cannot guarantee $\overline{R}_i M = M$ and hence we cannot say that M is an \overline{R}_i -module. However, $\overline{R}_i M$ is both an \overline{R}_i -module and an R-module.

 $Z(\overline{R_1}) \subseteq Z(R)$. It is clear that $(1,0,0,\cdots,0) \notin Z(\overline{R_1})$. However, noticing that

$$(1,0,0,\cdots,0)(0,1,0,\cdots,0)=(0,0,0,\cdots,0),$$

we can see that $(1,0,0,\cdots,0) \in Z(R)$. Hence, $Z(\overline{R_1}) \subsetneq Z(R)$.

THEOREM 1.1. Let R_1, R_2, \dots, R_n be principal ideal domains and let $R = R_1 \times R_2 \times \dots \times R_n$. For each $i \in \{1, 2, \dots, n\}$, let

$$\overline{R_i} = \{0\} \times \cdots \times \{0\} \times R_i \times \{0\} \cdots \times \{0\}.$$

Let M be finitely generated over R and let each $\overline{R}_i M$ be torsion-free over \overline{R}_i . Then the following statements are true.

(1) There exists a positive integer k such that M is an R-submodule of $R_1^k \times R_2^k \times \cdots \times R_n^k$.

- (2) M is projective over R.
- (3) M is torsion-free over R.

Proof. Assume that M is finitely generated over R and each $\overline{R}_i M$ is torsion-free over \overline{R}_i .

(1) There are elements $m_1, m_2, \dots, m_r \in M$ such that

$$M = Rm_1 + Rm_2 + \dots + Rm_r.$$

Let i be any element of $\{1, 2, \dots, n\}$. Then

$$\overline{R}_i M = \overline{R}_i (Rm_1 + Rm_2 + \dots + Rm_r)$$

$$= \overline{R}_i Rm_1 + \overline{R}_i Rm_2 + \dots + \overline{R}_i Rm_r$$

$$= \overline{R}_i m_1 + \overline{R}_i m_2 + \dots + \overline{R}_i m_r.$$

Hence, $\overline{R}_i M$ is finitely generated over \overline{R}_i . Since $\overline{R}_i M$ is torsion-free over a principal ideal domain \overline{R}_i , it follows from [M97, Theorem 2.4.1, p.19] that $\overline{R}_i M$ is free over \overline{R}_i . Hence, there exists a positive integer k_i such that

$$\overline{R}_i M = \overline{R}_i^{k_i}.$$

Hence, taking $k = \max\{k_1, k_2, \dots, k_n\}$, we can see that $\overline{R}_i M$ is R-isomorphic to $\overline{R_i^{k_i}}$, which is an R-submodule of R^k . Thus,

$$M = RM$$

$$= (\overline{R}_1 + \overline{R}_2 + \dots + \overline{R}_n)M$$

$$= \overline{R}_1 M + \overline{R}_2 M + \dots + \overline{R}_n M$$

$$= \overline{R_1^{k_1}} + \overline{R_2^{k_2}} + \dots + \overline{R_n^{k_n}}$$

$$\subseteq \overline{R_1^k} + \overline{R_2^k} + \dots + \overline{R_n^k}$$

$$= R_1^k \times R_2^k \times \dots \times R_n^k.$$

(2) By (1), we have

$$R^{k} \cong R_{1}^{k} \times R_{2}^{k} \times \dots \times R_{n}^{k}$$

$$\cong (R_{1}^{k_{1}} \times R_{2}^{k_{2}} \times \dots \times R_{n}^{k_{n}}) \oplus (R_{1}^{k-k_{1}} \times R_{2}^{k-k_{2}} \times \dots \times R_{n}^{k-k_{n}})$$

$$\cong M \oplus (R_{1}^{k-k_{1}} \times R_{2}^{k-k_{2}} \times \dots \times R_{n}^{k-k_{n}}).$$

Hence, M is a projective R-module.

(3) By the proof of (2), there exists an R-monomorphism $\varphi: M \to \mathbb{R}^k$. Assume that am = 0, where $a \in \mathbb{R} \setminus \mathbb{Z}(\mathbb{R})$ and $m \in M$. Since $\varphi(m) \in \mathbb{R}^k$, we can write $\varphi(m)$ as follows: $\varphi(m) = (a_1, a_2, \dots, a_k)$, where each $a_i \in \mathbb{R}$. Then

$$a(a_1, a_2, \cdots, a_k) = a\varphi(m) = \varphi(am) = \varphi(0) = 0.$$

This implies $aa_1 = 0$, $aa_2 = 0$, \cdots , $aa_k = 0$. Since $a \in R \setminus Z(R)$, we must have $a_1 = 0$, $a_2 = 0$, \cdots , $a_k = 0$. Hence, $\varphi(m) = 0$ and so m = 0. This shows that M is torsion-free over R.

COROLLARY 1.2 [M97, THEOREM 2.4.1, P.19]. Every finitely generated torsion-free module over a PID is free.

Proof. Let M be any finitely generated torsion-free module over a PID R. Then by Theorem 1.2(1), M is a submodule of a free module over the PID R. Hence, by [I81] or [P91, Corollary 6.4, p.58], M itself is free.

2. Finite Direct Products of Principal Ideal Domains

LEMMA 2.1 [M89, EXERCISE 1.2, P.6]. Let A_1, \dots, A_n be rings and let $A = A_1 \times \dots \times A_n$. Then

$$SpecA =$$

$$\bigcup_{i=1}^{n} \{A_1 \times \cdots \times A_{i-1} \times P_i \times A_{i+1} \times \cdots \times A_n \mid P_i \text{ is a prime ideal of } A_i\}.$$

Proof. This will be proved by the Mathematical Induction on n. Step I. Let n = 1. Then $\operatorname{Spec}(A_1) = \{P_1 \mid P_1 \text{ is a prime ideal of } A_1\}$. Step II. We prove first that the result is true for n = 2. It is easy to prove that

Spec(A)
$$\supseteq \{P_1 \times A_2 \mid P_1 \text{ is a prime ideal of } A_1\}$$

 $\cup \{A_1 \times P_2 \mid P_2 \text{ is a prime ideal of } A_2\}.$

Conversely, let P be any member of SpecA. Then $(1,0)(0,1) = (0,0) \in P$ implies $(1,0) \in P$ or $(0,1) \in P$. There are three cases to consider.

- (1) Assume that $(1,0) \in P$ and $(0,1) \in P$. Then $(1,1) \in P$. Hence, P = A. This is a contradiction.
- (2) Assume that $(1,0) \in P$ and $(0,1) \notin P$. Define a map $\lambda_1 : A_1 \to A$ by $\lambda_1(a) = (a,0)$, where $a \in A_1$. Then λ_1 is a monomorphism. Define a map $\lambda_2 : A_2 \to A$ by $\lambda_2(b) = (0,b)$, where $b \in A_2$. Then λ_2 is a monomorphism.

Let (a_1, a_2) be any element of $\lambda_1^{-1}(P) \times \lambda_2^{-1}(P)$. Then $a_1 \in \lambda_1^{-1}(P)$ implies $(a_1, 0) = \lambda_1(a_1) \in P$. $a_2 \in \lambda_2^{-1}(P)$ implies $(0, a_2) = \lambda_2(a_2) \in P$. Hence, $(a_1, a_2) = (a_1, 0) + (0, a_2) \in P$. This shows that

$$\lambda_1^{-1}(P) \times \lambda_2^{-1}(P) \subseteq P$$
.

Conversely, let (p_1, p_2) be any element of P. Then $(p_1, 0) = (p_1, 0)(1, 0) \in P$ and hence $(0, p_2) = (p_1, p_2) - (p_1, 0) \in P$. Hence, $(p_1, p_2) \in \lambda_1^{-1}(P) \times \lambda_2^{-1}(P)$. This shows that

$$P \subseteq \lambda_1^{-1}(P) \times \lambda_2^{-1}(P)$$
.

Thus,

$$P = \lambda_1^{-1}(P) \times \lambda_2^{-1}(P).$$

Since $(1,0) \in P$, we can see that $\lambda_1^{-1}(P) = A_1$. Since $(0,1) \notin P$, we can see that $\lambda_2^{-1}(P)$ is a prime ideal of A_2 . Therefore,

$$P = A_1 \times \lambda_2^{-1}(P),$$

where $\lambda_2^{-1}(P)$ is a prime ideal of A_2 .

(3) Assume that $(1,0) \notin P$ and $(0,1) \in P$. Then by a similar proof to (2), we can show that

$$P = \lambda_1^{-1}(P) \times A_2,$$

where $\lambda_1^{-1}(P)$ is a prime ideal of A_1 .

This shows that

Spec(A)
$$\subseteq \{P_1 \times A_2 \mid P_1 \text{ is a prime ideal of } A_1\}$$

 $\cup \{A_1 \times P_2 \mid P_2 \text{ is a prime ideal of } A_2\}.$

Therefore,

Spec(A) =
$$\{P_1 \times A_2 \mid P_1 \text{ is a prime ideal of } A_1\}$$

 $\cup \{A_1 \times P_2 \mid P_2 \text{ is a prime ideal of } A_2\}.$

Now, let n > 1. Assume that the result is true for n - 1. Let

$$A' = A_2 \times \cdots \times A_n.$$

Then $A = A_1 \times A'$. By the previous argument, we have

Spec(A) =
$$\{P_1 \times A' \mid P_1 \text{ is a prime ideal of } A_1\}$$

 $\cup \{A_1 \times P' \mid P' \text{ is a prime ideal of } A'\}.$

Further, by the induction hypothesis, we have

$$\operatorname{Spec} A' =$$

$$\bigcup_{i=2}^{n} \{A_2 \times \cdots \times A_{i-1} \times P_i \times A_{i+1} \times \cdots \times A_n \mid P_i \text{ is a prime ideal of } A_i\}.$$

Therefore,

$$Spec A =$$

$$\bigcup_{i=1}^{n} \{A_1 \times \cdots \times A_{i-1} \times P_i \times A_{i+1} \times \cdots \times A_n \mid P_i \text{ is a prime ideal of } A_i \}.$$

LEMMA 2.2. Let A_1, \dots, A_n be rings and let $A = A_1 \times \dots \times A_n$. Then the set of all primary ideals of R is

$$\bigcup_{i=1}^{n} \{A_1 \times \cdots \times A_{i-1} \times P_i \times A_{i+1} \times \cdots \times A_n \mid P_i \text{ is a primary ideal of } A_i \}.$$

THEOREM 2.3. Let A_1, \dots, A_n be Noetherian rings and let $A = A_1 \times \dots \times A_n$. Then every ideal of R is of the form

$$A_1 \times \cdots \times A_{i_1-1} \times P_{i_1} \times A_{i_1+1} \times \cdots \times A_{i_2-1} \times P_{i_2} \times A_{i_2+1} \times \cdots \times A_{i_n-1} \times P_{i_n} \times A_{i_n+1} \times \cdots \times A_n,$$

where $P_{i_1}, P_{i_2}, \dots, P_{i_r}$ are primary ideals of $A_{i_1}, A_{i_2}, \dots, A_{i_r}$, respectively.

Proof. Let A_1, \dots, A_n be Noetherian rings and let $A = A_1 \times \dots \times A_n$. Then A is a Noetherian ring. Let I be any ideal of A. Then I has a primary decomposition. By Lemma 2.2, there exist primary ideals $P_{i_1}, P_{i_2}, \dots, P_{i_r}$ of $A_{i_1}, A_{i_2}, \dots, A_{i_r}$, respectively such that

$$I = (A_1 \times \dots \times A_{i_1-1} \times P_{i_1} \times A_{i_1+1} \times \dots \times A_n)$$

$$\cap (A_1 \times \dots \times A_{i_2-1} \times P_{i_2} \times A_{i_2+1} \times \dots \times A_n)$$

$$\cap \dots \dots$$

$$\cap (A_1 \times \dots \times A_{i_r-1} \times P_{i_r} \times A_{i_r+1} \times \dots \times A_n).$$

The last expression is equal to

$$A_1 \times \cdots \times A_{i_1-1} \times P_{i_1} \times A_{i_1+1} \times \cdots \times A_{i_2-1} \times P_{i_2} \times A_{i_2+1} \times \cdots \times A_{i_r-1} \times P_{i_r} \times A_{i_r+1} \times \cdots \times A_n,$$

as required. It is obvious that the converse holds.

THEOREM 2.4. Let R_1, R_2, \dots, R_n be principal ideal domains and let $R = R_1 \times R_2 \times \dots \times R_n$. Then the following statements are true.

- (1) R is a principal ideal ring and if n > 1 then R is not an integral domain.
- (2) Every ideal of R is a direct summand of R.
- (3) Every ideal of R is projective over R.
- (4) R is hereditary.

Proof. (1) Let I be any ideal of R. Then

$$I = IR = I\overline{R_1} + I\overline{R_2} + \dots + I\overline{R_n}.$$

Each $I\overline{R_i}$ is an ideal of a PID $\overline{R_i}$, so there is an element $x_i \in R_i$ such that $I\overline{R_i} = \overline{R_i}\overline{x_i}$. Then

$$I = \overline{R}_1 \overline{x}_1 + \overline{R}_2 \overline{x}_2 + \dots + \overline{R}_n \overline{x}_n = R(x_1, x_2, \dots, x_n).$$

Hence, R is a principal ideal ring.

Assume that n > 1. Then

$$(1,0,0,\cdots,0)(0,1,0,\cdots,0)=(0,0,0,\cdots,0).$$

Hence, R is not an integral domain.

(2) Let I be any ideal of R. Then by Theorem 2.3, there exist primary ideals $P_{i_1}, P_{i_2}, \dots, P_{i_r}$ of $R_{i_1}, R_{i_2}, \dots, R_{i_r}$, respectively, such that

$$I = R_1 \times \dots \times R_{i_1-1} \times P_{i_1} \times R_{i_1+1} \times \dots \times R_{i_2-1} \times P_{i_2} \times R_{i_2+1} \times \dots \times R_{i_r-1} \times P_{i_r} \times R_{i_r+1} \times \dots \times R_n,$$

Notice that if P is a primary ideal of a PID, then $P \subseteq \sqrt{P} = 0$; hence P = 0. Then

$$R_1 \times \dots \times R_{i_1-1} \times 0 \times R_{i_1+1} \times \dots \times R_{i_2-1} \times 0 \times R_{i_2+1} \times \dots \times R_{i_r-1} \times 0 \times R_{i_r+1} \times \dots \times R_n,$$

Hence, $R = I + (\overline{R_{i_1}} + \overline{R_{i_2}} + \cdots + \overline{R_{i_r}})$. Therefore, every ideal of R is a direct summand of R.

- (3) This follows from (2).
- (4) This follows from (3).

3. Finitely Generated Torsion-free Modules over Reduced Noetherian Rings

LEMMA 3.1. Let R be a ring. If R is Noetherian, then Min(R) is finite.

Proof. Notice that

$$\sqrt{0_R} = \cap_{\mathfrak{p} \in \mathrm{Min}(R)} \mathfrak{p}.$$

If Min(R) is infinite, then the ideal $\sqrt{0_R}$ of R is an infinite intersection of primary ideals. This cannot happen in a Noetherian ring.

It is well-known [H88, Cor. 2.4, p.3] that in a reduced ring R,

$$Z(R) = \cup_{\mathfrak{p} \in \operatorname{Min}(R)} \mathfrak{p}.$$

LEMMA 3.2. Let R be a ring. If R is reduced and Noetherian, then every prime ideal \mathfrak{p} of R with $\mathfrak{p} \subseteq Z(R)$ is a minimal prime ideal of R.

Proof. Assume that R is reduced and Noetherian. Let \mathfrak{p} be any prime ideal of R such that $\mathfrak{p} \subseteq Z(R)$. Since R is reduced, we can see that

$$\mathfrak{p}\subseteq Z(R)=\cup_{\mathfrak{q}\in\mathrm{Min}(R)}\mathfrak{q}.$$

Since R is Noetherian, it follows from Lemma 3.1 that Min(R) is finite. Hence, by the Prime Avoidance Theorem there exists \mathfrak{q} in Min(R) such that $\mathfrak{p} \subseteq q$. By the minimality of \mathfrak{q} , we have $\mathfrak{q} = \mathfrak{p}$. Hence, $\mathfrak{p} \in Min(R)$.

LEMMA 3.3. Let A be a reduced Noetherian ring. Let $S = A \setminus Z(A)$. Then there exist $\mathfrak{p}_1, \mathfrak{p}_2, \cdots, \mathfrak{p}_r \in Min(A)$ such that

- (1) $Z(A) = \mathfrak{p}_1 \cup \mathfrak{p}_2 \cup \cdots \cup \mathfrak{p}_r$,
- (2) $Max(A_S) = \{\mathfrak{p}_1 A_S, \mathfrak{p}_2 A_S, \cdots, \mathfrak{p}_r A_S\}, (Hence, A_S \text{ is a semilo-} cal ring with maximal ideals <math>\mathfrak{p}_1 A_S, \mathfrak{p}_2 A_S, \cdots, \mathfrak{p}_r A_S.)$
- (3) $A_S \cong A_S / \mathfrak{p}_1 A_S \oplus A_S / \mathfrak{p}_2 A_S \oplus \cdots \oplus A_S / \mathfrak{p}_r A_S$.

Proof. Since A is Noetherian and reduced, there exist distinct elements $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_r \in \text{Min } (A)$ such that $0 = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \dots \cap \mathfrak{p}_r$.

(1) If r = 1, then $\mathfrak{p}_1 = 0 \subseteq Z(A)$. Assume that r > 1. Then

$$0 = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \cdots \cap \mathfrak{p}_r \supseteq \mathfrak{p}_1 \mathfrak{p}_2 \cdots \mathfrak{p}_r$$

implies $\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_r=0$. $\mathfrak{p}_1,\mathfrak{p}_2,\cdots,\mathfrak{p}_r$ are all contained in Z(A). Hence, $\mathfrak{p}_1\cup\mathfrak{p}_2\cup\cdots\cup\mathfrak{p}_r\subseteq Z(A)$. Conversely, let $x \in Z(A)$. Then there exists a non-zero element $y \in A$ such that xy = 0. Suppose that $x \notin \mathfrak{p}_1 \cup \mathfrak{p}_2 \cup \cdots \cup \mathfrak{p}_r$. Then $x \notin \mathfrak{p}_1$. So, $xy = 0 \in \mathfrak{p}_1$ implies $y \in \mathfrak{p}_1$. By a similar proof, we can show that $y \in \mathfrak{p}_2, \dots, y \in \mathfrak{p}_r$. Hence,

$$y \in \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \cdots \cap \mathfrak{p}_r = 0.$$

This contradiction shows that $x \in \mathfrak{p}_1 \cup \mathfrak{p}_2 \cup \cdots \cup \mathfrak{p}_r$. Thus, $Z(A) \subseteq \mathfrak{p}_1 \cup \mathfrak{p}_2 \cup \cdots \cup \mathfrak{p}_r$.

Therefore, $Z(A) = \mathfrak{p}_1 \cup \mathfrak{p}_2 \cup \cdots \cup \mathfrak{p}_r$.

(2) By (1),

$$S = A \backslash Z(A) = (A \backslash \mathfrak{p}_1) \cap (A \backslash \mathfrak{p}_2) \cap \cdots \cap (A \backslash \mathfrak{p}_r).$$

Since $\mathfrak{p}_1 \cap S = \emptyset$, $\mathfrak{p}_1 A_S$ is a minimal prime ideal of A_S . Similarly, $\mathfrak{p}_2 A_S, \dots, \mathfrak{p}_r A_S$ are minimal prime ideals of A_S .

Now, let M be any maximal ideal of A_S . Then there exists a prime ideal \mathfrak{p} of A with $\mathfrak{p} \cap S = \emptyset$ such that $\mathfrak{p} A_S = M$. Since $\mathfrak{p} \cap S = \emptyset$, $\mathfrak{p} \subseteq Z(A) = \mathfrak{p}_1 \cup \mathfrak{p}_2 \cup \cdots \cup \mathfrak{p}_r$. By the Prime Avoidance Theorem [S90, Theorem 3.61, p.56], there is an element $i \in \{1, 2, \cdots, r\}$ such that $\mathfrak{p} \subseteq \mathfrak{p}_i$. By the minimality of \mathfrak{p}_i , we must have $\mathfrak{p}_i = \mathfrak{p}$. So, $M = \mathfrak{p} A_S = \mathfrak{p}_i A_S$. This shows that

$$\operatorname{Max}(A_S) \subseteq \{\mathfrak{p}_1 A_S, \mathfrak{p}_2 A_S, \cdots, \mathfrak{p}_r A_S\}.$$

Conversely, let I be an ideal of A_S such that $\mathfrak{p}_1A_S \subseteq I \subseteq A_S$. Assume that $I \neq A_S$. Then there is a maximal ideal N of A_S such that $I \subseteq N$. By the previous argument, there is an element $i \in \{1, 2, \dots, r\}$ such that $N = \mathfrak{p}_i A_S$. So,

$$\mathfrak{p}_1 A_S \subseteq I \subseteq N = \mathfrak{p}_i A_S.$$

By the minimality of $p_i A_S$, we must have

$$\mathfrak{p}_i A_S = \mathfrak{p}_1 A_S$$
.

Hence, $I = \mathfrak{p}_1 A_S$. This shows that $\mathfrak{p}_1 A_S$ is a maximal ideal of A_S . Similarly, we can show that $\mathfrak{p}_2 A_S, \dots, \mathfrak{p}_2 A_S$ are maximal ideals of A_S . Therefore,

$$\{\mathfrak{p}_1 A_S, \mathfrak{p}_2 A_S, \cdots, \mathfrak{p}_r A_S\} \subseteq \operatorname{Max}(A_S).$$

Consequently, Max $(A_S) = \{ \mathfrak{p}_1 A_S, \mathfrak{p}_2 A_S, \cdots, \mathfrak{p}_r A_S \}.$

(3) Notice that

$$\mathfrak{p}_1 A_S \cap \mathfrak{p}_2 A_S \cap \dots \cap \mathfrak{p}_r A_S = (\mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \dots \cap \mathfrak{p}_r) A_S = 0 A_S = 0.$$

Further, by Zorn's lemma and by (2), we see that

$$\mathfrak{p}_i A_S + \mathfrak{p}_j A_S = A_S$$

for every i, j with $i \neq j$. Then by the Chinese Remainder Theorem, we have

$$A_S \cong A_S / \mathfrak{p}_1 A_S \oplus A_S / \mathfrak{p}_2 A_S \oplus \cdots \oplus A_S / \mathfrak{p}_r A_S .$$

THEOREM 3.4. Let A be a reduced Noetherian ring. Let $S = A \setminus Z(A)$. If M is finitely generated torsion-free over A, then M_S is projective over A_S .

Proof. Let M be finitely generated torsion-free over A. Then M_S is finitely generated torsion-free over A_S . By Lemma 3.3 and Theorem 1.1, M_S is projective over A_S .

References

- [H88] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, Inc., 1988.
- [I81] J. Isbell, Submodules of Free Modules, Amer. Math. Monthly 88 (1) (1981), 53.
- [M89] Hideyuki Matsumura, Commutative Ring Theory, Cambridge University Press, 1989.
- [M97] S. Mandal, *Projective Modules and Complete Intersections*, Springer-Verlag, 1997.
- [P91] Donald S. Passman, A Course in Ring Theory, Wadsworth & Brooks /Cole Publishing Company, 1991.
- [S88] Patrick F. Smith, Some Remarks on Multiplication Modules, Arch. Math. 50 (1988), 223–235.
- [S90] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 1990.

Sang Cheol Lee

Department of Mathematics Education

and Institute of Pure and Applied Mathematics

Chonbuk National University

Chonju, Chonbuk 561-756, South Korea

E-mail: scl@chonbuk.ac.kr

Sunah Kim

Department of Mathematics

Chosun University

Kwangju 501-759, South Korea

E-mail: sakim@mail.chosun.ac.kr