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FINITELY GENERATED PROJECTIVE
MODULES OVER NOETHERIAN RINGS

SANG CHEOL LEE* AND SUNAH KiMm

Abstract. It is well-known that every finitely generated torsion-
free module over a principal ideal domain is free. This will

be generalized. We deal with ideals of the finite, external di-

rect product of certain rings. Finally, if M is a torsion-free,

finitely generated module over a reduced, Noetherian ring A,

then we prove that Mg is a projective module over Ag, where

S = A\Z(A).

0. Entr@d@ction

Through out this paper, every ring is a commutative ring with an
identity element.

Let A be a ring. We adopt the following notations.

(1) Z(A)= the set of all zero-divisors of A.

(2) Spec (A) = the set of all prime ideals of A.

(3) Min (A) = the set of all minimal prime ideals of A.
(4) Max (A)= the set of all maximal ideals of A.
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1. Finitely Generated Torsion-free Modules

Let R = Zg. Then 32 = 3in R, so 3 is an idempotent element of R.
Let M = R/3R. Then M is a cyclic module over R, so it is a finitely
generated multiplication module over R. Moreover, Anng(M) = 3R.
Then by [$88, Theorem 11], M is a projective R-module. Of course,
R is a Noetherian ring.

It is well-known [M97, Theorem 2.4.1, p.19] that every finitely
generated torsion-free module over a principal ideal domain is free.
This will be generalized below.

Let Ri,Ro,--+ ,R, beringsand let R =R; x Ro x--- X R,,. For
eachi e {1,2, - ,n}, let

R; = {0} x ---x {0} x By x {0} --- x {0}.
Let ¢ be any element of {1,2,--- ,n}. Then R C R Ifn > 1,
then the identities of R; and R differ. Hence, if n > 1, then we
cannot guarantee ;M = M and hence we cannot say that M is an
R;-module. However, R; M is both an R;-module and an R-module.

Z(R,) C Z(R). 1t is clear that (1,0,0,---,0) ¢ Z(R,;). However,
noticing that

(1,0307"' a0)<0»170a"' 50) = (070707'"' 70)9
we can see that (1,0,0,---,0) € Z(R). Hence, Z(E;) S Z(R).

THEOREM 1.1. Let Ry, Rq,---, R, be principal ideal domains

and let R= Ry X Ry X -+ x R,. Foreachi € {1,2,---,n}, let

Ry ={0} x - x {0} x Ry x {0}--- x {0}
Let M be finitely generated over R and let each R; M be torsion-free
over R;. Then the following statements are true.

(1) There exists a positive integer k such that M is an R-submodule
of RF x RE x .- x RE.
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(2) M is projective over R.

(3) M is torsion-free over R.

Proof. Assume that M is finitely generated over R and each R; M
is torsion-free over R;.

(1) There are elements my, mg, - ,m, € M such that
M = Rm; + Rms + -+ Rm,.
Let i be any element of {1,2,--- ,n}. Then

RiM = R;(Rm; + Rmo + - + Rm,)
= Rile —+ RiRmQ + RIRTI’LT
- Riml +Rzm2 4. +F1m,~

Hence, R;M is finitely generated over R;. Since R, M is torsion-
free over a principal ideal domain R;, it follows from [M97, Theorem
2.4.1, p.19] that R;M is free over R;. Hence, there exists a positive
integer k; such that

RM =T

Hence, taking k = max{ky, k2, -, kn}, we can see that R;M is R-

isomorphic to Rfi, which is an R-submodule of R*. Thus,

M = RM
=(Ri+Ry+- +R,)M
RM +RoM +-- + R, M

=R} + Ry +. -+ Rir
CRE4RE+... +RE

_ pk k k
=R{ xRy x- - - xR
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(2) By (1), we have
RFE=RFxREx - xR
2 (RM X RE? x - - x REn) @ (RFR w RE=F2 o RE=Fn)
= M@ (REF s RETR2 5. REEn),
Hence, M is a projective R-module.

(3) By the proof of (2), there exists an R-monomorphism ¢ : M —
R*. Assume that am = 0, where ¢ € R\Z(R) and m € M. Since
p(m) € RF, we can write (m) as follows: p(m) = (a1, a2, -, ax),
where each a; € R. Then

alar,az, - ,ar) = ap(m) = p(am) = ¢(0) = 0.

This implies aa; = 0,aa2 = 0, ,aa;, = 0. Since a € R\Z(R), we
must have a; = 0,a2 = 0,--- ,a; = 0. Hence, p(m) = 0 and so
m = 0. This shows that M is torsion-free over R. ‘ O

COROLLARY 1.2 [M97, THEOREM 2.4.1, P.19]. Every finitely

generated torsion-free module over a PID is free.

Proof. Let M be any finitely generated torsion-free module over a
PID R. Then by Theorem 1.2(1), M is a submodule of a free module
over the PID R. Hence, by [I81] or [P91, Corollary 6.4, p.58], M itself

is free. O

2. Finite Direct Products of Principal Ideal Domains

LEMMA 2.1 [M89, EXERCISE 1.2, P.6]. Let Ay, -, A, be rings
and let A =A; x - x A,,. Then

SpecA =

U{Al X oo X Aj1 X Py X Ajpq X - x Ay | Py is a prime ideal of A;}.
=1
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Proof. This will be proved by the Mathematical Induction on n.

Step . Let n = 1. Then Spec(A;) = {P, | P, is a prime ideal of A4;}.

Step II. We prove first that the result is true for n = 2. It is easy
to prove that

Spec(A) D{P; x Ay | P is a prime ideal of Ay}
U{A; x Py | P, is a prime ideal of Ay}

Conversely, let P be any member of SpecA. Then (1,0)(0,1) =
(0,0) € P implies (1,0) € P or (0,1) € P. There are three cases to
consider.

(1) Assume that (1,0) € P and (0,1) € P. Then (1,1) € P.
Hence, P = A. This is a contradiction.

(2) Assume that (1,0) € P and (0,1) ¢ P. Define a map )\; :
Ay — A by A(a) = (a,0), where a € A;. Then A; is a monomor-
phism. Define a map Ay : Ay — A by A2(b) = (0,b), where b € A,.
Then Ay is a monomorphism.

Let (a1,a2) be any element of \7'(P) x A;'(P). Then a; €
A7 (P) implies (a1,0) = Ai(a1) € P. ag € A\;'(P) implies (0,as) =
A2(ag) € P. Hence, (a1,a2) = (a1,0) + (0,az) € P. This shows that

MY P)x NYP)CP

Conversely, let (p1,p2) be any element of P. Then (p1,0) =
(P1,0)(1,0) € P and hence (0,p2) = (p1,p2) — (p1,0) € P. Hence,
(p1,p2) € ATH(P) x A; ' (P). This shows that

P CATHP) x AFY(P).

Thus,
P =)' (P) x \;YP).
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Since (1,0) € P, we can see that A\] ' (P) = A;. Since (0,1) ¢ P,

we can see that Ay '(P) is a prime ideal of Ay. Therefore,
P = A x \;H(P),

where A; '(P) is a prime ideal of A,.
(3) Assume that (1,0) ¢ P and (0,1) € P. Then by a similar

proof to (2), we can show that
P = )\1(P) x Ay,

where A\['(P) is a prime ideal of A;.
This shows that

Spec(A) C{P; x Ay | Py is a prime ideal of A;}
U{A1 X Py | P, is a prime ideal of Ay},

Therefore,

Spec(A) ={P; x Ay | P; is a prime ideal of A;}
U{A;1 x P, | P, is a prime ideal of As}.

Now, let n > 1. Assume that the result is true for n — 1. Let
A=Ay x - X A,
Then A = A; x A’. By the previous argument, we have

Spec(A) ={P; x A" | P is a prime ideal of A;}
U{A; x P"| P is a prime ideal of A'}.

Further, by the induction hypothesis, we have
SpecA’ =

U{A;g X X A@'_l X Pi X A—i—i—l X X An l Pz is a prime ideal of Az}
1=2



Finitely Generated Projective Modules over Noetherian Rings 505

Therefore,

SpecA =
U{A1 XX Ay 1 X Pyx Ajg X+ x Ay | P; is a prime ideal of A;}.
i=1
O

LEMMA 2.2. Let Ay, -, A, berings and let A= A; x -+ X A,.
Then the set of all primary ideals of R is

U{Alx- coX A1 X PixAji1 X x Ay | Py is a primary ideal of A;}.
i=1

Proof. Adopt the proof of Lemma 2.1. O

THEOREM 2.3. Let Ay, -, A, be Noetherian rings and let A =
Aq x -+ x A,. Then every ideal of R is of the form |

A1><"'><Ai1-1><Pi1XAi1+1><"'><A¢2—1><Pi2XAiz+1

X A 1 X Py X Aj 41 X X Ay,

where P;,, P;
spectively.

-+, P, are primary ideals of A;, Aiy,--- , A, re-

Proof. Let Aq,---, A, be Noetherian rings and let A = Ay x--- %
An. Then A is a Noetherian ring. Let I be any ideal of A. Then
I has a primary decomposition. By Lemma 2.2, there exist primary

ideals 5, , Py,,--- | P; of A, Aiy, -+, A;,, respectively such that

21

II(Alx-"XAil_lXPilXAI‘I_{_lX"-XAn)
m(A1><"'XA7;2._1XPi2XAi2+1X-"XAn)

N(A; X x A1 X Py X A 11 X X Ay).
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The last expression is equal to

A1 X X Ail—l X Pi1 X Ai1+1 X oo X A,i2_1 X PZ'2 X A1'2+1

X Air—l X Pir X Air+1 X oo X An,
as required. It is obvious that the converse holds. 0

THEOREM 2.4. Let Ry, Rs, -, R, be principal ideal domains
and let R = R} X Ry X -+ x R,. Then the following statements

are true.

(1) R is a principal ideal ring and if n > 1 then R is not an
integral domain.

(2) Every ideal of R is a direct summand of R.

(3) Every ideal of R is projective over R.

(4) R is hereditary.

Proof. (1) Let I be any ideal of R. Then
I=IR=IR + 1R+ +IR,.

Each I'R; is an ideal of a PID R;, so there is an element z; € R; such
that IR; = R;%;. Then

Izﬁlfl +E2§'2 +"'—|-En:’f‘n = R(Sﬁl,mg,‘“ ,(L‘n).

Hence, R is a principal ideal ring.

Assume that n > 1. Then
(1,0,0,--- ,O)(O,l,O,--~ ,0) = (0,0,0,-~- ,O).

Hence, R is not an integral domain.
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(2) Let I be any ideal of R. Then by Thecrem 2.3, there exist pri-
mary ideals P, P, -, P, of Ry, R;,, -+, R, , respectively, such
that

I:R1X‘--XRI'1_1><P¢I XRil_i-lX"'XRZ'Z,lXPiQXRiQ.;.l

X Rir—l X Pir X Rir+1 X X Rn,

Notice that if P is a primary ideal of a PID, then P CV/P = 0; hence
P =0. Then

Ry x X Ry 1 X0X R i1 X XRiy 1 x0X Ry g

X Ry 1 X OX 41 X - X Ry,

Hence, R = I + (R;, + R, + -+ + R;.). Therefore, every ideal of R
is a direct summand of R.

(3) This follows from (2).

(4) This follows from (3). O

3. Finitely Generated Torsion-free Modules over Re-

duced Noetherian Rings

LEMMA 3.1. Let R be a ring. If R is Noetherian, then Min(R)

Is finite.

Proof. Notice that
VOr = Npemin(r)P-

If Min(R) is infinite, then the ideal\/0g of R is an infinite intersection

of primary ideals. This cannot happen in a Noetherian ring. OJ
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It is well-known [H88, Cor. 2.4, p.3] that in a reduced ring R,

Z(R) = UpeMin(r)P-

LEMMA 3.2. Let K be a ring. If R is reduced and Noetherian,
then every prime ideal p of R with p C Z(R) is a minimal prime
ideal of R.

Proof. Assume that R is reduced and Noetherian. Let p be any
prime ideal of R such that p C Z(R). Since R is reduced, we can see
that

p C Z(R) = Ugemin(m) -

Since R is Noetherian, it follows from Lemma 3.1 that Min(R) is
finite. Hence, by the Prime Avoidance Theorem there exists q in
Min(R) such that p C ¢. By the minimality of g, we have q = p.
Hence, p € Min(R). O

LEMMA 3.3. Let A be a reduced Noetherian ring. Let 5 =
A\Z(A). Then there exist py,pa, -+ ,p, € Min (A) such that
(1) Z(A) =p1UpaU---Upy,
(2) Max (Ag) = {p1As,p2ds, - ,prAg}, (Hence, Ag is a semilo-
cal ring with maximal ideals p1As, p2As, - ,prAs.)
(3) As =2 Ag [/pAs © As [p2As @ @ As [prAs.

Proof. Since A is Noetherian and reduced, there exist distinct
elements p1,pa, -+, pr € Min (A4) such that 0 =p; Npa N - NPy
(1) Ifr =1, then p; = 0 C Z(A). Assume that r > 1. Then

O=p1NpaN---Nppr D P1po--- Py

implies pips---pr = 0. p1,p2,- -, P, are all contained in Z(A).
Hence, p1 Upa U---Up, C Z(A).
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Conversely, let z € Z(A). Then there exists a non-zero element
y € A such that zy = 0. Suppose that z ¢ py Upa U--- Up,. Then
z ¢ p1. So, zy = 0 € py implies y € p;. By a similar proof, we can
show that y € py, -,y € p,. Hence,

yeEmNpaN---Np, =0

This contradiction shows that z € p; Upa U ---Up,.. Thus, Z(A) C
prUpaU---Up,.

Therefore, Z(A) =py UpaU---Up,.

(2) By (1),

S = A\Z(A) = (A\p1) N (A\p2) -1 (A\p,).

Since p1 NS = 0, p1Ag is a minimal prime ideal of Ag. Similarly,
poAg, -, prAg are minimal prime ideals of Ag.

Now, let M be any maximal ideal of Ag. Then there exists a prime
ideal p of A with pN S = 0 such that pAs = M. Since pN S = 0,
p C Z(A) =py UpyU---Up,. By the Prime Avoidance Theorem
[S90, Theorem 3.61, p.56], there is an element 7 € {1,2,--- ,r} such
that p C p;. By the minimality of p;, we must have p;, = p. So,
M =pAg = p;Ag. This shows that

Max (AS) g {P1A57¥32A57' v 7pT‘AS}'

Conversely, let I be an ideal of Ag such that pyAs C I C Ag.
Assume that I # Ag. Then there is a maximal ideal N of Ag

such that I C N. By the previous argument, there is an element
i€{1,2,---,r} such that N = p;Ag. So,

p1As €T C N =p;As.
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By the minimality of p; Ag, we must have
pids = pr1as.

Hence, I = p1Ag. This shows that p; Ag is a maximal ideal of Ag.
Similarly, we can show that psAg, - ,p2Ag are maximal ideals of

Ag. Therefore,
{p14s,p2ds, -, prAs}t C Max (As).

Consequently, Max (Ag) = {p14s,p2As, - ,prAs}.
(3) Notice that

prAsNpeAsN--NpAsg = (p1NpaN---Np)Asg =045 = 0.
Further, by Zorn’s leroma and by (2), we see that
pids +pjAs = Ag

for every 4,7 with 7 3 7. Then by the Chinese Remainder Theorem,

we have
Ag = As [p1As © Ag [pahs @ B Ag [prAg .

O

THEOREM 3.4. Let A be a reduced Noetherian ring. Let 5 =
A\Z(A). If M is finitely generated torsion-free over A, then Mg Is

projective over Ag.
Proof. Let M be finitely generated torsion-free over A. Then

Mg is finitely generated torsion-free over Ag. By Lemma 3.3 and

Theorem 1.1, Mg is projective over Ag. O
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