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THE TOTAL TORSION ELEMENT GRAPH

WITHOUT THE ZERO ELEMENT OF MODULES

OVER COMMUTATIVE RINGS

Fatemeh Esmaeili Khalil Saraei

Abstract. Let M be a module over a commutative ring R, and let T (M)
be its set of torsion elements. The total torsion element graph of M

over R is the graph T (Γ(M)) with vertices all elements of M , and two
distinct vertices m and n are adjacent if and only if m + n ∈ T (M).
In this paper, we study the basic properties and possible structures of
two (induced) subgraphs Tor0(Γ(M)) and T0(Γ(M)) of T (Γ(M)), with
vertices T (M) \ {0} and M \ {0}, respectively. The main purpose of this
paper is to extend the definitions and some results given in [6] to a more
general total torsion element graph case.

1. Introduction

The concept of the graph of the zero-divisors of a ring was first introduced
by Beck in [12] when discussing the coloring of a commutative ring. For the
vertices of the graph, he takes all elements of a commutative ring R and two
distinct vertices a, b ∈ R are adjacent if ab = 0. There are many ways to
associate a graph to a given ring R. The most well-known is certainly the
zero-divisor graph Γ(R) introduced in [9] whose vertices are the nonzero zero-
divisors of R. Some properties of this graph may be found in [5] and [10]. In [8],
Anderson and Badawi define, for a commutative ring R with nonzero identity,
its total graph Γ(R). The set of vertices of this graph is R and two different
elements x, y ∈ R are adjacent if and only if x + y ∈ Z(R) which Z(R) is the
set of all zero-divisors of R. For a recent generalization of this type of graph
see [7] and [11]. Let M be a module over a commutative ring R and let T (M)
be the set of all torsion elements of M . In [14], the notion of the total torsion
element graph of a module over a commutative ring is introduced and denoted
by T (Γ(M)), as the graph with all elements of M as vertices and for distinct
m,n ∈ M , the verticesm and n are adjacent if and only if m+n ∈ T (M). They
characterize the girths and diameters of T (Γ(M)) and two (induced) subgraphs
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Tof(Γ(M)) and Tor(Γ(M)) with vertices Tof(M) = M \ T (M) and T (M),
respectively. Some other investigation into properties of total torsion element
graph of a module over a commutative ring may be found in [1], [2] and [13]. In
[6], Anderson and Badawi studied the two subgraphs Z0(Γ(R)) and T0(Γ(R))
of T (Γ(R)), with vertices Z(R)\{0} and R\{0}, respectively. They determined
when Z0(Γ(R)) and T0(Γ(R)) are connected and computed their diameters and
girths.

Throughout this paper all rings are commutative with nonzero identity and
all modules are unitary. In this paper, we consider the (induced) subgraphs
Tor0(Γ(M)) of Tor(Γ(M)) and T0(Γ(M)) of T (Γ(M)) obtained by deleting
0 as a vertex. Specially, Tor0(Γ(M)) (respectively, T0(Γ(M))) has vertices
T (M)∗ = T (M) \ {0} (respectively, M∗ = M \ {0}), and two distinct vertices
m and n are adjacent if and only if m+ n ∈ T (M).

A proper submodule N of an R-module M is said to be a prime submodule
if whenever rm ∈ N for some r ∈ R, m ∈ M , then m ∈ N or rM ⊆ N , so
(N : M) = P is a prime ideal of R, and N is said to be a P -prime submodule
(see [15]). The set of all prime submodules of an R-module M is denoted by
SpecR(M). In Section 2, we define torsion prime submodules of an R-module
M by [3, Theorem 3.3]. The intersection of all torsion prime submodules of M
denoted by radT (M). The study of Tor0(Γ(M)) and T0(Γ(M)) breaks natu-
rally into two cases depending on whether or not radT (M) is zero and on the
number of torsion prime submodules of M . In Sections 3 and 4, we determine
the diameter and girth of subgraph Tor0(Γ(M)) of T0(Γ(M)). In Section 5, we
consider the graph T0(Γ(M)), show that diam(T (Γ(M)) = diam(T0(Γ(M))),
when M is a cyclic R-module and |M | ≥ 4 and we determine its girth. Also
we show that if R is not an integral domain and T0(Γ(R)) is connected, then
T0(Γ(M)) is connected for every R-module M .

For the sake of completeness, we state some definitions and notations used
throughout. For a graph Γ, by E(Γ) and V (Γ), we denote the set of all edges and
vertices, respectively. We recall that a graph is connected if there exists a path
connecting any two distinct vertices. The distance between two distinct vertices
x and y, denoted by d(x, y), is the length of a shortest path connecting them (if
such a path does not exist, then d(x, x) = 0 and d(x, y) = ∞). The diameter of
a graph Γ, denoted by diam(Γ), is equal to sup{d(x, y) : x, y ∈ V (Γ)}. A graph
is complete if it is connected with diameter less than or equal to one. The girth
of a graph Γ, denoted gr(Γ), is the length of a shortest cycle in Γ, provided Γ
contains a cycle; otherwise; gr(Γ) = ∞. We denote the complete graph on n
vertices by Kn and the complete bipartite graph on m and n vertices by Km,n

(we allow m and n to be infinite cardinals).

2. Torsion subset of a module

We devote this section to the set of torsion elements of an R-module M .
We define torsion prime submodules of M and collect some basic properties of
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them which we will use throughout this paper. We first begin with the following
result that is proved in ([3, Theorem 3.3]).

Theorem 2.1. Let M be a module over a commutative ring R and T (M) 6= M .

Then T (M) is a union of prime submodules of M (see [3, Theorem 3.3]).

Corollary 2.2. Let M be a module over a commutative ring R and T (M) 6= M .

Then SpecR(M) 6= ∅.

Proof. It is clear by Theorem 2.1. �

Definition. Let M be an R-module. A prime submodule L of M is called a
torsion prime submodule when, L ⊆ T (M). Assume that SpecT (M) denotes
all torsion prime submodules of M . It is clear that SpecT (M) ⊆ Spec(M) and
if T (M) 6= M , then SpecT (M) 6= ∅ and T (M) =

⋃

L∈SpecT (M) L by Theorem

2.1. The T - radical ofM , denoted by radT (M), is defined to be the intersection
of all torsion prime submodules of M . If there is no torsion prime submodule
of M , then we put radT (M) = M . An R-module M is called T - reduced, if
radT (M) = 0.

We have the following lemma containing several results which we will use in
throughout this paper.

Lemma 2.3. Let M be an R-module and T (M) 6= M . Then:
(1) (T (M) : M) = Z(R).
(2) If L ∈ SpecT (M) is a P -prime submodule, then P ⊆ Z(R).
(3) If x ∈ T (M) and y ∈ rad(M), then x+ y ∈ T (M).
(4) If 0 ∈ SpecT (M), then T (M) = 0.
(5) r ∈ Z(R) if and only if rm ∈ T (M) for all m ∈ M .

Proof. (1) It follows from [2, Lemma 2.5].
(2) Assume that L ∈ SpecT (M) is a P -prime submodule. So (L : M) = P

and PM ⊆ L ⊆ T (M). Then P ⊆ (T (M) : M) = Z(R).
(3) Let x ∈ T (M). Then x ∈ L ⊆ T (M) for some L ∈ SpecT (M) by

Theorem 2.1. Since y ∈ rad(M) ⊆ L, it follows that x+ y ∈ L ⊆ T (M).
(4) Since T (M) 6= M , so (0 :R M) = 0. If m ∈ T (M), then rm = 0 for some

nonzero element r ∈ R. So m = 0, since 0 is a prime submodule of M .
(5) Assume that r ∈ Z(R) and m ∈ M . Then rs = 0 for some nonzero

element s ∈ R, so s(rm) = 0. Thus rm ∈ T (M). Conversely, suppose that
x ∈ M \T (M), then rx ∈ T (M). So t(rx) = 0 for some nonzero element t ∈ R.
If tr 6= 0, then x ∈ T (M) which is a contradiction. Thus tr = 0 as required. �

Proposition 2.4. Let M be a module over a commutative ring R with T (M) 6=
M such that R is not an integral domain. If L1 ∩ L2 = 0 for some L1, L2 ∈
SpecT (M), then:

(1) Either K ∩ L1 6= 0 or K ∩ L2 6= 0 for every K ∈ Spec(M).
(2) If K ∩L1 6= 0 and K ∩L2 = 0 for some K ∈ Spec(M), then (L1 : M) =

(K : M).
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Proof. (1) Let L1 be a P1- prime submodule and L2 be a P2- prime submodule
of M . Since Z(R) 6= 0, so P1, P2 6= 0 by Lemma 2.3. Therefore P1P2M ⊆
P1M ∩ P2M ⊆ L1 ∩ L2 = 0. Now, suppose that K is a P -prime submodule of
M . Thus P1P2M = 0 ⊆ K. This implies that either P1M ⊆ K or P2M ⊆ K,
since K is a prime submodule of M . Hence either 0 6= P1M ⊆ K ∩ L1 or
0 6= P2M ⊆ K ∩ L2.

(2) Let L1 be a P1- prime submodule and K be a P -prime submodule of
M . We must show that P1 = P . By (1), it is clear that P1 ⊆ P . On the other
hand PP2M ⊆ PM ∩P2M ⊆ K ∩L2 = 0. Then PP2M = 0 ⊆ L1. So P ⊆ P1,
since L1 is a P1- prime submodule and L1 ∩ L2 = 0. �

3. The diameter of Tor0(Γ(M))

In this section, we compute the diameter of graph Tor0(Γ(M)). Our answers
depend on whether or not M is a T -reduced module. It is clear that T (M) = M
if and only if graph T0(Γ(M)) is complete and T0(Γ(M)) is disconnected when
T (M) = 0 and M 6= 0. So we may assume that T (M) 6= 0 and T (M) 6= M .

We first study the case when M is not a T -reduced R-module.

Theorem 3.1. Let M be a non-T -reduced R-module. Then Tor0(Γ(M)) is

connected with diam(Tor0(Γ(M))) ∈ {0, 1, 2}.

Proof. Assume that M is a non-T -reduced R-module. Let m,m′ ∈ T (M)∗ be
distinct vertices of Tor0(Γ(M)). If eitherm ∈ radT (M) orm′ ∈ radT (M), then
m+m′ ∈ T (M) by Lemma 2.3. So,m−m′ is an edge in Tor0(Γ(M)). Therefore,
we may assume that m /∈ radT (M), m′ /∈ radT (M) and m+m′ /∈ T (M). Let
0 6= n ∈ radT (M). Then m − n−m′ is a path in Tor0(Γ(M)) of length 2 by
Lemma 2.3 and hence diam(Tor0(Γ(M))) ≤ 2. �

Note that Tor0(Γ(M)) is a complete graph if and only if T (M) is a sub-
module of M , and so diam(Tor0(Γ(M))) ≤ 1. Also, T (M) is a union of torsion
prime submodules ofM by Theorem 2.1. So, ifM is a non-T -reducedR-module
with T (M) 6= M , then diam(Tor0(Γ(M))) = 0 if and only if |T (M)∗| = 1.

We next consider when M is a T -reduced R-module. It is clear that, M is a
torsion free R-module if and only if |SpecT (M)| = 1. If M is a torsion free R-
module, then Tor0(Γ(M)) is the empty graph; so we assume that |SpecT (M)| ≥
2.

Proposition 3.2. Let M be a T -reduced R-module with |SpecT (M)| = 2 and

T (M) /∈ SpecT (M). Then Tor0(Γ(M)) is not connected.

Proof. Suppose that |SpecT (M)| = 2. Let L1, L2 ∈ SpecT (M). So, L1 ∩ L2 =
radT (M) = 0 and T (M) = L1 ∪ L2 by Theorem 2.1. Let 0 6= m ∈ L1 and
0 6= n ∈ L2. Then m+n /∈ T (M), since L1∩L2 = 0. So there can be no path in
Tor0(Γ(M)) from any L∗

1 to any L∗

2. Thus Tor0(Γ(M)) is not connected. �

Definition. Let M be an R-module and m,m′ ∈ M be nonzero distinct el-
ements. We say that m − x1 − · · · − xn − m′ is a torsion path from m to
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m′ if x1, . . . , xn ∈ T (M)∗ and xi + xi+1 ∈ T (M) for every 0 ≤ i ≤ n (let
x0 = m and xn+1 = m′). We define the torsion distance between two distinct
vertices m and m′, denoted by dT(m,m′), to be the length of a shortest torsion
path connecting them (if such a path does not exist, then dT (m,m) = 0 and
dT (m,m′) = ∞).

Definition. Let L and K be two distinct torsion prime submodules of an R-
module M . We say that there is a torsion path between L and K, if there exists
a torsion path from x to y for some x ∈ L∗ and y ∈ K∗. We define the torsion
distance between two distinct torsion prime submodules L and K, denoted by
dT(L,K), to be the length of a shortest torsion path connecting them (if such
a path does not exist, then dT (L,K) = ∞). It is clear that dT (L,K) = 0,
when L ∩K 6= 0.

We obtain some results concerning Tor0(Γ(M)) and it’s torsion paths by
the following lemma.

Lemma 3.3. Let M be an R-module with T (M) 6= M such that R is not an

integral domain. If there is a torsion path between L1 and L2 for some torsion

prime submodules L1 and L2 of M , then dT(L1, L2) ≤ 3.

Proof. If L1 ∩ L2 6= 0, then it is clear that dT(L1, L2) = 0. So we may assume
that L1∩L2 = 0. Suppose that there is a shortest path x−t1−t2−· · ·−tn−1−y
from x to y for some x ∈ L∗

1 and y ∈ L∗

2 of length n. So ti /∈ L1 and ti /∈ L2

for each i = 1, . . . , n − 1. Since t1 ∈ T (M), so t1 ∈ L3 for some torsion
prime submodule L3 of M by Theorem 2.1. Therefore either L3 ∩ L2 6= 0 or
L3 ∩ L1 6= 0 by Proposition 2.4. If 0 6= a ∈ L3 ∩ L2, then x − t1 − a is a
torsion path between L1 and L2 and so dT(L1, L2) ≤ 2, since L1 ∩ L2 = 0.
Now, suppose that 0 6= b ∈ L3 ∩ L1. Then b − t1 − t2 − · · · − tn−1 − y is a
torsion path between L1 and L2. If t2 ∈ L3, then b − t2 − · · · − tn−1 − y is
a torsion path between L1 and L2 of length n − 1. If t2 /∈ L3, then t2 ∈ L4

for some torsion prime submodule L4 of M . Similarly, either L4 ∩ L2 6= 0 or
L4 ∩ L1 6= 0 by Proposition 2.4. If 0 6= c ∈ L4 ∩ L2, then x − t1 − t2 − c is a
torsion path between L1 and L2 and so dT(L1, L2) ≤ 3. Otherwise there is a
nonzero element d ∈ L4 ∩L1. Thus d− t2− t3− · · ·− tn−1− y is a torsion path
between L1 and L2 of length n− 1. By similar argument to the above on ti’s
for i = 2, . . . , n− 1, we conclude that dT(L1, L2) ≤ 3. �

Theorem 3.4. Let M be a T -reduced R-module and T (M) 6= M . Then

diam(Tor0(Γ(M))) ∈ {1, 2, 3, 4, 5,∞}.

Proof. If R is an integral domain, then it is clear that T (M) is a prime submod-
ule of M and diam(Tor0(M)) ∈ {0, 1}. So we assume that R is not an integral
domain. Let M be a T -reduced R-module and x, y ∈ T (M)∗. If x, y ∈ L for
some torsion prime submodule L of M , then it is clear that d(x, y) = 1. So we
may assume that x ∈ L1 and y ∈ L2 for some torsion prime submodules L1

and L2 of M . If dT(L1, L2) = ∞, then d(x, y) = ∞ = diam(Tor0(Γ(M))). So
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suppose that dT(L1, L2) < ∞. Thus dT(L1, L2) ≤ 3 by Lemma 3.3. Now we
consider the following four cases:
Case 1. If dT(L1, L2) = 0, then there is a nonzero element a ∈ L1 ∩ L2. So
x− a− y is a torsion path and so d(x, y) = 2.
Case 2. If dT(L1, L2) = 1, then m+ n ∈ T (M) for some m ∈ L1 and n ∈ L2.
Thus x−m − n− y is a path in Tor0(Γ(M)). If either x = m or y = n, then
d(x, y) = 1 or 2, otherwise d(x, y) = 3.
Case 3. If dT(L1, L2) = 2, then m − k − n is a torsion path from m to n for
some m ∈ L1, n ∈ L2 and k ∈ T (M)∗. Therefore we have the torsion path
x−m−k−n−y. Hence by the various possibility for the x and y, d(x, y) = 2, 3
or 4.
Case 4. If dT(L1, L2) = 3, then m − k − g − n is a torsion path from m to
n for some m ∈ L1, n ∈ L2 and k, g ∈ T (M)∗. Therefore we have the torsion
path x −m− k − g − n− y. Hence by the various possibility for the x and y,
d(x, y) = 3, 4 or 5. Then diam(Tor0(Γ(M))) ∈ {1, 2, 3, 4, 5,∞}. �

4. The girth of Tor0(Γ(M))

The aim of this section is to show that gr(Tor0(Γ(M))) ∈ {3,∞}. Our
answer depends on the number of torsion prime submodules of M .

We first consider the case when M is not a T -reduced R-module.

Theorem 4.1. Let M be a non-T -reduced R-module and T (M) 6= M . Then

gr(Tor0(Γ(M))) = ∞ if and only if M has a unique nonzero torsion prime

submodule L with T (M) = L and |L| ≤ 3. Otherwise gr(Tor0(Γ(M))) = 3.

Proof. Suppose that |SpecT (M)| ≥ 2. Let L1 and L2 be distinct torsion prime
submodules of M . So L1, L2 ⊆ T (M). Then 0 6= radT (M) ⊆ L1 ∩ L2 ⊂ L1,
since radT (M) 6= 0. So |L1 ∩ L2| ≥ 2 and thus |L1| ≥ 4. Let x, y, z ∈ L∗

1 be
distinct. Then x−y−z−x is a 3-cycle in Tor0(Γ(M)). So gr(Tor0(Γ(M))) = 3.
Now, suppose that SpecT (M) = {L} and thus T (M) = L by Theorem 2.1. So
gr(Tor0(Γ(M))) = 3 if and only if |T (M)| ≥ 4. If | T (M) |≤ 3, it is clear that
gr(Tor0(Γ(M))) = ∞. �

We next handle the case when M is a T -reduced R-module.

Theorem 4.2. Let M be a T -reduced R-module and T (M) 6= 0,M . Then

gr(Tor0(Γ(M))) = ∞ if and only if SpecT (M) = {L1, L2} with max{|L1|, |L2|}
≤ 3. Otherwise, gr(Tor0(Γ(M))) = 3.

Proof. Suppose that L1, L2 and L3 are distinct torsion prime submodule of
M . By Proposition 2.4, we may assume that L1 ∩ L2 6= 0, then |L1 ∩ L2| ≥ 2
and |L1| ≥ 4. Let m1,m2,m3 ∈ L∗

1 be distinct. Then m1 −m2 −m3 −m1 is a
3-cycle in Tor0(Γ(M)). Thus gr(Tor0(Γ(M))) = 3, if |SpecT (M)| ≥ 3.

So, we may assume that SpecT (M) = {K,L}. Therefore T (M) = K ∪ L
and K ∩ L = {0}. So no x ∈ K∗ and y ∈ L∗ are adjacent in Tor0(Γ(M)) by
Proposition 3.2. Thus gr(Tor0(Γ(M))) = 3 if and only if |K| ≥ 4 or |L| ≥ 4.
Otherwise gr(Tor0(Γ(M))) = ∞. �
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We end this section with the following example.

Example 4.3. (1) Let R = Z6 and M = R as an R-module. Then T (M) =
{0̄, 2̄, 3̄, 4̄} and Spec(M) = SpecT (M) = {〈2̄〉, 〈3̄〉}. It is clear that M is a
T -reduced R-module and T (M) = 〈2̄〉 ∪ 〈3̄〉. So, Tor0(Γ(M)) is not connected
with diam(Tor0(Γ(M))) = ∞ and gr(Tor0(Γ(M))) = ∞.

(2) LetR = Z60 andM = R as anR-module. Then Spec(M) = SpecT (M) =
{〈2̄〉, 〈3̄〉, 〈5̄〉} and radT (M) = 〈3̄0〉. So M is a non-T -reduced R-module
and T (M) = 〈2̄〉 ∪ 〈3̄〉 ∪ 〈5̄〉. It is clear that Tor0(Γ(M)) is connected with
diam(Tor0(Γ(M))) = 2 and gr(Tor0(Γ(M))) = 3.

5. T0(Γ(M))

In this section, we state a general structure for T0(Γ(M)). We explicitly
compute gr(T0(Γ(M))). Also, we investigate the relationship of diameters and
girths between T (Γ(M)) and T0(Γ(M)) with assumption that M is a cyclic
R-module.

Assume that dT0
(m,n) denotes the distance from m to n in T0(Γ(M)) for

0 6= m,n ∈ M . We first show that dT0
(m,n) = dT (m,n). We begin with the

following lemma.

Lemma 5.1. Let M an R-module and 0 6= m,n ∈ M . Then m,n are connected

by a path in T0(Γ(M)) if and only if m,n are connected by a path in T (Γ(M)).
Moreover, dT0

(m,n) = dT (m,n) and diam(T0(Γ(M))) ≤ diam(T (Γ(M))).

Proof. If m,n are connected by a path in T0(Γ(M)), then it is clear that they
are connected by a path in T (Γ(M)). Conversely, suppose thatm−x1−x2−· · ·−
xk−n is a shortest path from m to n in T (Γ(M)). If xi = 0 for some 1 ≤ i ≤ k,
then xi−1, xi+1 ∈ T (M)∗ and xi−1 + xi+1 ∈ Tof(M) (set x0 = m and xk+1 =
n). Let x′

i = −(xi−1+xi+1). Then m−x1−· · ·−xi−1−x′

i−xi+1−· · ·−xk−n
is a shortest path from m to n in T0(Γ(M)). The “moreover” statement is
clear. �

Recall that if T (M) is a submodule ofM , then T (Γ(M)) is not connected [14,
Theorem 2.1]. If T (M) is not a submodule of M , then T (Γ(M)) is connected
if and only if M = 〈T (M)〉 [14, Theorem 3.2] and diam(T (Γ(M))) ≤ n, where
n ≥ 2 is the least positive integer such that M = 〈m1,m2, . . . ,mn〉 for some
m1, . . . ,mn ∈ T (M) [14, Theorem 3.3].

Also, if M is a cyclic R-module with generator m, then diam(T (Γ(M))) =
d(0,m) [14, Theorem 3.4]. The following example show that for an R-module
M , the structures of T (Γ(M)) and T0(Γ(M)) are not independent of ring R.

Example 5.2. (1) Let R = Z be the integer numbers ring and M = Z2 as an
R-module. It is clear that T (M) = M and easily verified that T0(Γ(M)) and
T (Γ(M)) are connected.

(2) Let R = Z2 and M = R as an R-module. Then T0(Γ(M)) is connected
but T (Γ(M)) is not connected by [6, Theorem 4.2].
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Now, we obtain various results for diam(T (Γ(M))) and diam(T0(Γ(M)))
when |M | ≤ 3 by Theorem 5.3 and Theorem 5.4.

Theorem 5.3. Let M be a module over a commutative ring R and |M | = 2.
(1) If M = T (M), then diam(T0(Γ(M))) = 0 and diam(T (Γ(M))) = 1.
(2) If M 6= T (M), then diam(T0(Γ(M))) = 0 and diam(T (Γ(M))) = ∞.

Proof. The proof is clear. �

Theorem 5.4. Let M be a module over a commutative ring R and |M | = 3.
(1) If M = T (M), then diam(T0(Γ(M))) = diam(T (Γ(M))) = 1.
(2) If M 6= T (M) and |T (M)| = 1, then

diam(T0(Γ(M))) = 1 and diam(T (Γ(M))) = ∞.

(3) If M 6= T (M) and |T (M)| = 2, then

diam(T0(Γ(M))) = 1 and diam(T (Γ(M))) = 2.

Proof. Let |M | = 3. Then M = {0, x, y} with x+ y = 0, 2x = y and 2y = x.
(1) IfM = T (M), then it is clear that diam(T0(Γ(M))) = diam(T (Γ(M))) =

1.
(2) IfM 6= T (M) and |T (M)| = 1, then T (M) = {0}. So diam(T0(Γ(M))) =

1 but x and y are not adjacent to 0 in T (Γ(M)). Thus diam(T (Γ(M))) = ∞.
(3) IfM 6= T (M) and |T (M)| = 2, then we may assume that T (M) = {0, x}.

So diam(T0(Γ(M))) = 1 and 0− x− y is a path from 0 to y in T (Γ(M)). Thus
diam(T (Γ(M))) = 2. �

Corollary 5.5. Let M be a module over a commutative ring R and |M | ≤ 3.
(1) If M = T (M), then T0(Γ(M)) and T (Γ(M)) are connected.

(2) If |T (M)| = 1, then T0(Γ(M)) is connected, but T (Γ(M)) is not con-

nected.

(3) If |M | = 3 and |T (M)| = 2, then T0(Γ(M)) and T (Γ(M)) are connected.

Proof. The proof is clear by Theorem 5.3 and Theorem 5.4. �

Theorem 5.6. Let M be a module over a commutative ring R. If |M | ≥ 4,
then T0(Γ(M)) is connected if and only if T (Γ(M)) is connected.

Proof. Suppose that T (Γ(M)) is connected. Then T0(Γ(M)) is also connected
by Lemma 5.1. Conversely, suppose that T0(Γ(M)) is connected and |M | ≥ 4.
So M is not a torsion-free module and there is an m ∈ T (M)∗. Let 0 6= n ∈ M .
Then there is a path from m to n in T0(Γ(M)). Since m ∈ T (M), so m is
adjacent to 0 in T (Γ(M)). Hence there is a path from n to 0 in T (Γ(M)) and
thus T (Γ(M)) is also connected. �

Example 5.7. Let R = Z6 and M = R as an R-module. By Example 4.3, we
have diam(Tor0(Γ(M))) = ∞ and diam(T0(Γ(M))) = 2. Also, If R = M =
Z60, then diam(T0(Γ(M))) = diam(Tor0(Γ(M))) = 2 and diam(Tor0(Γ(M)))
= 0 < diam(T0(Γ(M))) = ∞ for R = M = Z4. Therefore there is no relation-
ship between diam(Tor0(Γ(M))) and diam(T0(Γ(M))).
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Our next goal is to show that diam(T0(Γ(M))) = diam(T (Γ(M))) when M
is a cyclic R-module with |M | ≥ 4.

We begin with the following theorem.

Theorem 5.8. Let M be a cyclic R-module and T (M) 6= 0.
(1) T (Γ(M)) is connected if and only if diam(T (Γ(M))) < ∞.

(2) T0(Γ(M)) is connected if and only if diam(T0(Γ(M))) < ∞.

Proof. Let M be a cyclic R-module with generator m and T (M) 6= 0.
(1) Suppose that T (Γ(M)) is connected. So there is a finite path 0 − x1 −

· · · − xk−1 −m from 0 to m. Then diam(T (Γ(M))) = d(0,m) = k < ∞ by [14,
Theorem 3.4]. The converse is clear.

(2) Suppose that T0(Γ(M)) is connected. So there is an element a ∈ T (M)∗.
Let 0 6= b ∈ M . Then there is a path from a to b in T0(Γ(M)). But a is
adjacent to 0 in T (Γ(M)); therefore there is a path from 0 to b in T (Γ(M))
and T (Γ(M)) is connected. So diam(T0(Γ(M))) ≤ diam(T (Γ(M))) < ∞ by
part (1) and Lemma 5.1.

The converse is clear. �

Lemma 5.9. Let M be a cyclic module over a commutative ring R with gen-

erator m. Let n ≥ 2 be the least integer such that M = 〈m1,m2, . . . ,mn〉 for

some m1, . . . ,mn ∈ T (M). If 0 6= x ∈ M , then:
(1) If x ∈ T (M)∗, then dT0

(m,x) = dT (m,x) ∈ {n− 1, n}.
(2) If n is an even integer, then dT0

(m− x, x) = k = dT (m− x, x) for some

even integer k ≤ n.
(3) If n is an odd integer and m 6= −x, then dT0

(m+x, x) = k = dT (m+x, x)
for some odd integer k ≤ n.

(4) If n is an even integer, then dT0
(m− x, x) = n = dT (m− x, x) for every

x ∈ T (M)∗.
(5) If n is an odd integer, then dT0

(m+ x, x) = n = dT (m+ x, x) for every

x ∈ T (M)∗.

Proof. It is clear that 2 ≤ diam(T (Γ(M))) = n < ∞ by [14, Theorem 3.3].
(1) Let x−y1−y2−· · ·−yk−1−m be a shortest path from x tom in T0(Γ(M))

of length k. Then k = dT0
(x,m) = dT (x,m) ≤ n by Lemma 5.1. Thus

x+ y1, y1 + y2, . . . , yk+1 +m ∈ T (M). Since m ∈ 〈x, x+ y1, y1 + y2, . . . , yk−1 +
m〉 ⊆ 〈T (M)〉, we have M = 〈x, x + y1, y1 + y2, . . . , yk+1 + m〉. Since M is
generated by k + 1 elements of T (M) and diam(T (Γ(M))) = n, so n ≤ k + 1
by [14, Theorem 3.3]. Therefore k ≤ n ≤ k + 1; so either k = n or k = n− 1
as required.

(2) Suppose that n is an even integer. If m− x = x, then dT0
(m− x, x) = 0.

So we assume that m − x 6= x. If m ∈ T (M), then M = 〈m〉 ⊆ 〈T (M)〉, this
implies that n = 1 [14, Theorem 3.3], a contradiction. So dT0

(m−x, x) ≥ 2. Let
x−y1−y2−· · ·−yk−1−(m−x) be a shortest path from x to m−x in T0(Γ(M))
of length k. Thus k ≤ n. So x+ y1, . . . , yk−1 +(m− x) ∈ T (M). If k is an odd
integer, then m = (x+ y1)− (y1+ y2)+ · · ·− (yk−2 + yk−1)+ (yk−1 +(m− x)).
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So we have m ∈ 〈x+ y1, y1 + y2, . . . , yk−1 +(m− x)〉. Then M is generated by
k elements of T (M). Thus n ≤ k by [14, Theorem 3.3]. So k = n which is a
contradiction. Hence dT0

(m− x, x) = k = dT (m − x, x) for some even integer
k ≤ n.

(3) Let n be an odd integer and m + x 6= 0. If m + 2x ∈ T (M), then
dT0

(m+ x, x) = 1. So we may assume that m+ 2x /∈ T (M) and then dT0
(m+

x, x) ≥ 2. Suppose that x− y1 − y2 − · · · − yk−1 − (m+ x) be a shortest path
from x to m+ x in T0(Γ(M)) of length k. Thus k ≤ n. If k is an even integer,
then −m = (x+ y1)− (y1 + y2) + · · ·+ (yk−2 + yk−1)− (yk−1 + (m+ x)). So
m ∈ 〈x+y1, y1+y2, . . . , yk−1+(m+x)〉. Then M is generated by k elements of
T (M). Thus n ≤ k by [14, Theorem 3.3]. Thus k = n which is a contradiction.
Hence dT0

(m+ x, x) = k = dT (m+ x, x) for some odd integer k ≤ n.
(4) Let n be an integer and x ∈ T (M)∗. Then 0 6= m−x ∈ M and (m−x)+

x = m /∈ T (M). So m−x and x are distinct. Therefore k = dT0
(m−x, x) is an

even positive integer by part (2) above. Let x− y1 − y2 − · · · − yk−1 − (m− x)
be a shortest path from x to m− x in T0(Γ(M)) of length k. If k < n, then we
have m = 2x− (x + y1) + (y1 + y2) − · · · − (yk−2 + yk−1) + (yk−1 + (m− x)).
So m ∈ 〈x, x+ y1, y1 + y2, . . . , yk−1 + (m− x)〉. Then M is generated by k + 1
elements of T (M). Hence n ≤ k+1. Thus n = k+1, which is a contradiction,
since n is an even integer but k + 1 is an odd integer. So dT0

(m− x, x) = n =
dT (m− x, x).

(5) Assume that n is an odd integer and x ∈ T (M)∗. If 2x +m ∈ T (M),
then m ∈ 〈x, 2x+m〉. So M is generated by 2 elements of T (M), this implies
that n = 2, which is a contradiction. Thus 0 6= x+m,m ∈ M are distinct and
2x+m /∈ T (M). So k = dT0

(m+ x, x) ≥ 3 is an odd integer by part (3) above.
Let x − y1 − y2 − · · · − yk−1 − (m+ x) be a shortest path from x to m+ x in
T0(Γ(M)) of length k. if k < n, then −m = 2x − (x + y1) + (y1 + y2) + · · ·+
(yk−2+yk−1)− (yk−1+(m+x)). So m ∈ 〈x, x+y1, y1+y2, . . . , yk−1+(m+x)〉
and M is generated by k + 1 elements of T (M). Hence n ≤ k + 1. Thus
n = k + 1 which is a contradiction, since n is an odd integer but k + 1 is an
even integer. So dT0

(m+ x, x) = k = dT (m+ x, x). �

Theorem 5.10. Let M be a cyclic module over a commutative ring R, |M | ≥ 4
and T (M) 6= 0. Then diam(T0(Γ(M))) = diam(T (Γ(M))).

Proof. Assume that M is a cyclic module and |M | ≥ 4. Then T0(Γ(M)) is con-
nected if and only if T (Γ(M)) is connected by Theorem 5.6 and diam(T0(Γ(M)))
≤ diam(T (Γ(M))) by Lemma 5.1. Thus diam(T (Γ(M))) = ∞ if and only if
diam(T0(Γ(M))) = ∞ by Theorem 5.8. So we may assume that diam(T (Γ(M)))
= n < ∞. Let M is generated by m and x ∈ T (M)∗. If n is an even integer,
then dT0

(m − x, x) = dT (m − x, x) = n by Lemma 5.9(4). If n is an odd
integer, then dT0

(m + x, x) = dT (m + x, x) = n by Lemma 5.9(5), and hence
diam(T0(Γ(M))) = diam(T (Γ(M))) = n by Lemma 5.1. �
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Recall that if T (M) is not a submodule of M , then gr(Tor(Γ(M))) = 3 or
gr(Tor(Γ(M))) = ∞ and gr(T (Γ(M))) = 3 if and only if gr(Tor(Γ(M))) = 3
[14, Theorem 3.5]. Also, If gr(T (Γ(M))) = 4, then gr(Tor(Γ(M))) = ∞ if
T (M) is not a submodule of M [14, Theorem 3.5]. Now, we provide a proof
for the converse of [14, Theorem 3.5(3)] by torsion prime submodules of M .

Theorem 5.11. Let M be a module over a commutative ring R such that

T (M) is not a submodule of M . Then gr(T (Γ(M))) = 4, if and only if

gr(Tor(Γ(M))) = ∞. Moreover, if gr(Tor(Γ(M))) = ∞, then |T (M)| = 3.

Proof. If gr(T (Γ(M))) = 4, then gr(Tor(Γ(M))) = ∞ by [14, Theorem 3.5].
Conversely, suppose that gr(Tor(Γ(M))) = ∞. Since T (M) is not a submodule
ofM , so T (M) 6= M . Then T (M) =

⋃

α∈Λ Lα, where each Lα is a torsion prime
submodule of M , then |Λ| ≥ 2. If gr(Tor(Γ(M))) = ∞, then x + y ∈ Tof(M)
for all distinct elements x, y ∈ T (M)∗. So |Lα| = 2 for every α ∈ Λ. Hence
the intersection of any two distinct Lα’s is {0} and so |Λ| = 2 by Proposition
2.4. So T (M) = L1 ∪ L2 for torsion prime submodules L1 and L2 of M with
L1 ∩ L2 = 0 and |L1| = |L2| = 2. So we may assume that L1 = {0, x} and
L2 = {0, y} where 2x = 2y = 0. So |T (M)| = 3 and x + y /∈ T (M). Thus
0− x− (x+ y)− y− 0 is a 4-cycle in T (Γ(M)). Then gr(T (Γ(M))) ≤ 4. Since
gr(Tor(Γ(M))) = ∞, then gr(T (Γ(M))) = 4 by [14, Theorem 3.5].

The “moreover” statement follows directly from the above arguments. �

Note that if T (M) is a submodule of M , then gr(T (Γ(M))) = 3 if and only
if |T (M)| ≥ 3, gr(T (Γ(M))) = 4 if and only if 2 /∈ Z(R) and |T (M)| = 2, and
gr(T (Γ(M))) = ∞ otherwise [14, Theorem 2.9].

Also, if T (M) is not a submodule of M , then gr(T (Γ(M))) = 3 if and only if
gr(Tor(Γ(M))) = 3 and gr(T (Γ(M))) = 4, if and only if gr(Tor(Γ(M))) = ∞
by [14, Theorem 3.5] and Theorem 5.11.Thus gr(T (Γ(M))) ∈ {3, 4,∞}. The
next theorem gives a more explicit description of gr(T (Γ(M))).

Theorem 5.12. Let M be a module over a commutative ring R and T (M) 6=
M . Then gr(T (Γ(M))) ∈ {3, 4,∞}. Moreover,

(1) gr(T (Γ(M))) = 3 if and only if gr(Tor(Γ(M))) = 3,
(2) gr(T (Γ(M))) = ∞ if and only if either M is a torsion free R-module or

2 ∈ Z(R) and |T (M)| = 2,
(3) gr(T (Γ(M))) = 4 otherwise.

Proof. (1) This follows from [14, Theorems 2.9 and 3.5].
(2) Let gr(T (Γ(M))) = ∞. Then T (M) is a submodule ofM and |T (M)| ≤ 2

by [14, Theorems 2.9 and 3.5] and Theorem 5.11. So either |T (M)| = 1 or
|T (M)| = 2 and 2 ∈ Z(R) by [14, Theorem 2.9]. Then M is a torsion free
R-module or 2 ∈ Z(R) and |T (M)| = 2.

Conversely, If T (M) = 0, then gr(T (Γ(M))) = ∞ by [14, Theorem 2.9]. So
we assume that 2 ∈ Z(R) and |T (M)| = 2. Let T (M) = {0, x}. So 2x = 0,
since x 6= 0 and 2x ∈ T (M) by Lemma 2.3(5). Therefore T (M) is a submodule
of M . So gr(T (Γ(M))) = ∞ by [14, Theorem 2.9]. �
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Lemma 5.13. Let M be a module over a commutative ring R.

(1) If gr(Tor0(Γ(M))) = 3, then gr(T0(Γ(M))) = gr(T (Γ(M))) = 3.
(2) If gr(T (Γ(M))) = ∞, then gr(T0(Γ(M))) = ∞ = gr(Tor0(Γ(M))).

Proof. We have

gr(T (Γ(M))) ≤ gr(T0(Γ(M))) ≤ gr(Tor0(Γ(M))),

since Tor0(Γ(M)) is a (induced) subgraph of T0(Γ(M)) and T0(Γ(M)) is a
(induced) subgraph of T (Γ(M)). So the proofs of (1) and (2) are clear. �

Recall that if R = Z6 and M = R as an R-module, then M is a T -reduced
module and gr(Tor0(Γ(M))) = ∞ by Example 4.3. But 1̄− 3̄− 5̄− 1̄ is a 3-cycle
in T (Γ(M)) and T0(Γ(M)). So gr(T (Γ(M))) = gr(T0(Γ(M))) = 3. Therefore
the converse of Lemma 5.13 is not true.

Now, we explicitly determine gr(T0(Γ(M))). The proof breaks naturally into
two cases depending on whether or not M is a T -reduced R-module.

Theorem 5.14. Let M be a non-T-reduced R-module. Then gr(T0(Γ(M))) ∈
{3, 4,∞}.

Proof. Let M be a non-T-reduced R-module. Then gr(Tor0(Γ(M))) ∈ {3,∞}
by Theorem 4.1. If gr(Tor0(Γ(M))) = 3, then gr(T0(Γ(M))) = 3 by Lemma
5.13. So we may assume that gr(Tor0(Γ(M))) = ∞. Then T (M) is the unique
non-zero torsion prime submodule of M with |T (M)| ≤ 3 by Theorem 4.1.
Now we split the proof into three cases:
Case 1. Assume that |T (M)| = 2 and 2 ∈ Z(R), so gr(T (Γ(M))) = ∞ by
Theorem 5.12. Hence gr(T0(Γ(M))) = ∞ by Lemma 5.13.
Case 2. If |T (M)| = 3 and 2 ∈ Z(R), then gr(Tof(Γ(M))) = 3 by [14,
Theorem 2.9] and so gr(T0(Γ(M))) = 3.
Case 3. If |T (M)| ∈ {2, 3} and 2 /∈ Z(R), then

gr(T0(Γ(M))) ≤ gr(Tof(Γ(M))) = 4

by [14, Theorem 2.9] and since Tof(Γ(M)) is a (induced) subgraph of T0(Γ(M)).
So gr(T0(Γ(M))) ∈ {3, 4}. �

Theorem 5.15. Let M be a T-reduced R-module and T (M) 6= 0,M . Then

gr(T0(Γ(M))) ∈ {3, 4,∞}.

Proof. If gr(Tor0(Γ(M))) = 3, then gr(T0(Γ(M))) = 3 by Lemma 5.13. So
we may assume that gr(Tor0(Γ(M))) = ∞. Then T (M) = L ∪K such that
L∩K = {0} and max{|L|, |K|} ≤ 3 for some nonzero torsion prime submodule
L and K of M by Theorem 4.2. Then T (M) is not a submodule of M and
|T (M)| ∈ {3, 4, 5}. Now we split the proof into three cases:
Case 1. If |T (M)| = 3, then L = {0, x} and K = {0, y} of M such that 2x =
2y = 0 and x+ y /∈ T (M), since L ∩K = 0. It is clear that gr(Tor(Γ(M))) =
∞. So gr(T (Γ(M))) = 4 by Theorem 5.11. Hence gr(T (Γ(M))) = 4 ≤
gr(T0(Γ(M))). If 2.1R 6= 0, then 2(x + y) = 0 implies that x + y ∈ T (M)
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which is a contradiction. So 2.1R = 0 and 2m = 0 for every m ∈ M . If
|M | = 4, then it is clear that gr(T0(Γ(M))) = ∞. So we assume that |M | ≥ 5.
Then there is an element z ∈ M \ T (M) such that z 6= x + y. Therefore
z − (z + x) − (z + x + y) − (z + y) − z is a 4-cycle in T0(Γ(M). Hence
gr(T0(Γ(M))) = 4.
Case 2. Suppose that |T (M)| = 4. So L = {0, x1, y1} and K = {0, x2}. Then
x1 + y1 ∈ T (M), 2x2 = 0 and x1 + x2, y1 + x2 /∈ T (M) since L ∩ K = 0.
So (x2 + y1) − x2 − (x1 + x2) − (x2 + y1) is a 3-cycle in T0(Γ(M). Hence
gr(T0(Γ(M))) = 3.
Case 3. If |T (M)| = 5, then L = {0, x1, y1} andK = {0, x2, y2}. So x1+y1 = 0
and 2x2 = y2. Then similarly x1 − y1 − (x1 + x2)− (x2 + y1)− x1 is a 3-cycle
in T0(Γ(M) and so gr(T0(Γ(M))) = 3.

Therefore gr(T0(Γ(M))) ∈ {3, 4,∞}. �

By Theorem 5.14 and Theorem 5.15, we have the following corollary:

Corollary 5.16. Let M be a module over a commutative ring R. Then

gr(T0(Γ(M))) ∈ {3, 4,∞}.

We end this paper with a theorem that shows the relationship of diameters
and girths between T0(Γ(R)) and T0(Γ(M)) for an R-module M .

Theorem 5.17. Let R be a commutative ring that is not an integral domain

and let M be an R-module.

(1) If T0(Γ(R)) is connected, then T0(Γ(M)) is connected. Moreover if

diam(T0(Γ(R))) = n, then diam(T0(Γ(M))) ≤ 2n+ 1.
(2) If M 6= T (M) and gr(T0(Γ(R))) ∈ {3, 4}, then gr(T0(Γ(M))) ∈ {3, 4}.

Proof. (1) Let T0(Γ(R)) be connected and m,n ∈ M∗. Then there exists a
path z − a1 − a2 − · · · − ak−1 − 1 from z to 1 of length k from z to 1 for some
z ∈ Z(R)∗. So z, z + a1, . . . , ak−1 + 1 ∈ Z(R). Thus m− ak−1m− · · · − a1m−
zm− zn−a1n−· · ·−ak−1n−n is a path from m to n of length at most 2k+1
by Lemma 2.3(5). The “moreover” statement follows directly from the above
arguments and [6, Corollary 4.3].

(2) Let gr(T0(Γ(R))) = 3. Then there is a 3-cycle r1−r2−r3−r1 for nonzero
distinct elements r1, r2, r3 ∈ R. Assume that x ∈ M \ T (M). If rix = rjx for
some i, j = 1, 2, 3, then (ri−rj)x = 0. Thus ri = rj , since x /∈ T (M). Therefore
r1x, r2x and r3x are distinct. So r1x−r2x−r3x−r1x is a 3-cycle in T0(Γ(M)).
If gr(T0(Γ(R))) = 4, similarly one can show that gr(T0(Γ(M))) = 4. �

Example 5.18. LetR = Z andM = Z4 as an R-module. Since R is an integral
domain, so gr(T0(Γ(R))) = ∞ = diam(T0(Γ(R))) by [6, Theorem 4.8 and
Example 4.6]. It is clear thatM is a torsionR-module and so gr(T0(Γ(M))) = 3
and diam(T0(Γ(M))) = 1. So the converses of (1) and (2) in Theorem 5.17, are
not true.

Acknowledgments. The author is deeply grateful to the referee for careful
reading of the manuscript and helpful suggestions.



734 FATEMEH ESMAEILI KHALIL SARAEI

References

[1] A. Abbasi and Sh. Habibi, The total graph of a commutative ring with respect to proper

ideals, J. Korean Math. Soc. 49 (2012), no. 1, 85–98.
[2] , The total graph of a module over a commutative ring with respect to proper

submodules, J. Algebra Appl. 11 (2012), no. 3, 1250048, 13 pp.
[3] D. D. Anderson and S. Chun, The set of torsion elements of a module, Comm. Algebra.

42 (2014), 1835–1843.
[4] D. D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra. 159

(1993), no. 2, 500–514.
[5] D. F. Anderson, M. C. Axtell, and J. A. Stickles, Jr., Zero-divisor graphs in commuta-

tive rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M.
Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), 23–45, Springer-Verlag, New
York, 2011.

[6] D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the

zero element, J. Algebra Appl. 11 (2012), no. 4, 1250074, 18 pp.
[7] , The generalized total graph of a commutative ring, J. Algebra Appl. 12 (2013),

no. 5, 1250212, 18 pp.
[8] , The total graph of a commutative ring, J. Algebra. 320 (2008), no. 7, 2706–

2719.
[9] D. F. Anderson and P. F. Livingston, The zero-divisor graph of a commutative ring, J.

Algebra. 217 (1999), no. 2, 437–447.
[10] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J.

Pure Appl. Algebra. 210 (2007), no. 2, 543–550.
[11] Z. Barati, K. Khashyarmanesh, F. Mohammadi, and K. Nafar, On the associated graphs

to a commutative ring, J. Algebra Appl. 11 (2012), no. 2, 1250037, 17 pp.
[12] I. Beck, Coloring of commutative rings, J. Algebra. 116 (1988), no. 1, 208–226.
[13] S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, The total torsion element graph of

semimodules over commutative semirings, Algebra and Discrete Mathematics 16 (2013),
no. 1, 1–15.

[14] S. Ebrahimi Atani and S. Habibi, The total torsion element graph of a module over a

commutative ring, An. St. Univ. Ovidius Constant. 19 (2011), no. 1, 23–34.
[15] R. L. MacCasland and P. F. Smith , Prime submodules of Noetherian modules, Rocky

Mountain J. Math. 23 (1993), 1041–1062.

Faculty of Fouman

College of Engineering

University of Tehran

P.O. Box 43515-1155, Fouman, Iran

E-mail address: f.esmaeili.kh@ut.ac.ir




