• Title/Summary/Keyword: Redox-flow battery

Search Result 115, Processing Time 0.022 seconds

Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성)

  • Baek, Young-Min;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.586-592
    • /
    • 2011
  • In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate (VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, $^1H$ NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.

A Newly Designed Fixed Bed Redox Flow Battery Based on Zinc/Nickel System

  • Mahmoud, Safe ELdeen M.E.;Youssef, Yehia M.;Hassan, I.;Nosier, Shaaban A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.236-243
    • /
    • 2017
  • A fixed-bed zinc/nickel redox flow battery (RFB) is designed and developed. The proposed cell has been established in the form of a fixed bed RFB. The zinc electrode is immersed in an aqueous NaOH solution (anolyte solution) and the nickel electrode is immersed in the catholyte solution which is a mixture of potassium ferrocyanide, potassium ferricyanide and sodium hydroxide as the supporting electrolyte. In the present work, the electrode area has been maximized to $1500cm^2$ to enforce an increase in the energy efficiency up to 77.02% at a current density $0.06mA/cm^2$ using a flow rate $35cm^3/s$, a concentration of the anolyte solution is $1.5mol\;L^{-1}$ NaOH and the catholyte solution is $1.5mol\;L^{-1}$ NaOH as a supporting electrolyte mixed with $0.2mol\;L^{-1}$ equimolar of potassium ferrocyanide and potassium ferricyanide. The outlined results from this study are described on the basis of battery performance with respect to the current density, velocity in different electrolytes conditions, energy efficiency, voltage efficiency and power of the battery.

Synergistic Effect of the MnO Catalyst and Porous Carbon Matrix for High Energy Density Vanadium Redox Flow Battery (고에너지 밀도 바나듐 레독스 흐름 전지를 위한 망간산화물 촉매와 다공성 탄소 기재의 시너지 효과)

  • Kim, Minsung;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.150-155
    • /
    • 2019
  • The carbon electrode was modified through manganese-catalyzed hydrogenation method for high energy density vanadium redox flow battery (VRFB). During the catalytic hydrogenation, the manganese oxide deposited at the surface of the carbon electrode stimulated the conversion reaction from carbon to methane gas. This reaction causes the penetration of the manganese and excavates a number of cavities at electrode surface, which increases the electrochemical activity by inducing additional electrochemically active site. The formation of the porous surface was confirmed by the scanning electron microscopy (SEM) images. Finally, the electrochemical performance test of the electrode with the porous surface showed lower polarization and high reversibility in the cathodic reaction compared to the conventional electrode.

Development of Activated Graphite Felt Electrode Using Ozone and Ammonia Consecutive Post Treatments for Vanadium Redox Flow Batteries (오존, 암모니아 순차적 처리를 통한 바나듐 레독스 흐름 전지용 활성화 카본 펠트 전극 개발)

  • CHOI, HANSOL;KIM, HANSUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • A carbon felt electrode was prepared using ozone and ammonia sequential treatment and applied as an electrode for a vanadium redox flow battery (VRFB). The physical and electrochemical analyses demonstrate that the oxygen groups facilitate nitrogen doping in the carbon felt. Carbon felt (J5O3+NH3), which was subjected to ammonia heat treatment after ozone treatment, showed higher oxygen and nitrogen contents than carbon felt (J5NH3+O3), which was subjected to ammonia heat treatment first and then ozone treatment. From the charging/discharging of VRFB, the J5O3+NH3 carbon felt electrode showed 14.4 Ah/L discharge capacity at a current density of 150 mA /cm2, which was 15% and 33% higher than that of J5NH3+O3 and non-activated carbon felt (J5), respectively. These results show that ozone and ammonia sequential treatment is an effective carbon felt activation method to increase the performance of the vanadium redox flow battery.

Surface Treatment with Alkali Solution of Carbon Felt for Vanadium Redox Flow Battery (바나듐레독스흐름전지용 카본펠트전극의 알칼리용액을 이용한 표면개질)

  • KIM, SUNHOE;LEE, KEON JOO
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.4
    • /
    • pp.372-377
    • /
    • 2016
  • The carbon felt used as the electrode of vanadium redox flow battery (VRFB) requires imprived electrochemical activity for better battery performance and efficiencies. Many efforts have been tried to improve electrochemical activity of the carbon felt as electrodes. In this study the alkali solution, KOH, is applied on surface treatment of the carbon felt electrode. The carbon felts were treated with KOH under room temperature and $80^{\circ}C$. The isopropyl alcohol was applied to improve wettability of the carbon felt during KOH treatment. The KOH treated carbon felt was analyzed by using the X-ray photoelectron spectroscopy (XPS). The XPS analysis of carbon felt electrode revealed on increase in the overall surface oxygen content of the carbon felts after KOH treatment. Also, cyclic voltametry tests showed electrochemical characteristics enhancement of the carbon felt.

The Electrolyte Flow Rate Effect on the Performance of a Vanadium Redox Flow Battery (VRFB) (바나듐레독스흐름전지의 전해질의 유량 변화에 따른 성능 영향성)

  • YECHAN PARK;SUNHOE KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.803-807
    • /
    • 2022
  • In this study, the battery performance change according to the change of electrolyte flow rate. With increase of electrolyte flow rate the energy efficiency showed tendency of decrease. The electrochemical impedance spectroscopy results showed the increased resistance.

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

Study on a Separator for the Zn-Br Redox Flow Battery (Zn-Br 레독스 흐름 전지용 격막에 관한 연구)

  • Na, Il-Chae;Jo, Hong-Sic;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2014
  • Two commercial membranes (porous membrane and cation exchange membrane) were evaluated as a separator in the Zn-Br redox-flow battery (ZBRFB). The performance properties of ZBRFB were test in the current density of $20mA/cm^2$. The electromotive forces (OCV at SOC 100%) of ZBRFB using SF-600 (porous membrane) and Nafion 117 (cation exchange membrane) were 1.87 V and 1.93 V, respectively. The cycle performance of ZBRFB using each membrane was evaluated during 7 cycles. The performance of ZBRFB using SF-600 membrane was 89.76%, 83.46% and 74.88% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of ZBRFB using Nafion117 membrane was 97.7%, 76.33% and 74.56% for average current efficiency, average voltage efficiency and average energy efficiency, respectively.

Study on the Electrolyte for Zn-Br Redox Flow Battery (Zn-Br 레독스 흐름 전지용 전해액에 관한 연구)

  • Choi, Ho-Sang;Oh, Yong-Hwan;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.4
    • /
    • pp.347-352
    • /
    • 2013
  • Four types of electrolyte were tested for the application as an electrolyte in the Zn-Br redox flow battery. Electrolyte was consist of $ZnBr_2$ (electrolyte number 1), $ZnBr_2+KCl$ (electrolyte number 2), $ZnBr_2+KCl+NH_4Br$ (electrolyte number 3) and $ZnBr_2+KCl+EMPBr(C_7H_{16}BF_4N)$ (electrolyte number 4). The each electrolyte property was measured by CV (cyclic voltammetry) method. The different between the potential of anodic and cathodic maximum current density in a CV experiment (${\Delta}E_P$) was 0.89V, 0.89V, 1.06V and 0.61V for the electrolyte number 1, 2, 3 and 4, respectively. The electrolyte involved KCl increased conductivity which was appeared by anodic and cathodic maximum current density in a CV experiment. It was estimated that the electrolyte of number 3 ($ZnBr_2+KCl+NH_4Br$) and number 4 ($ZnBr_2+KCl+EMPBr$) could be suitable as an electrolyte in the Zn-Br redox flow battery with non-appeared bubble, non-Br formation and high anodic-cathodic maximum current density.

Study on the Vanadium Redox Flow Battery using Cation Exchange Membrane and Ammonium Metavanadate (메타바나듐산암모늄과 양이온교환막을 활용한 바나듐 레독스 흐름전지에 관한 연구)

  • Jung, Bo-Young;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.262-267
    • /
    • 2021
  • The electrochemical performance of all vanadium redox flow battery (VRFB) using an electrolyte prepared from ammonium metavanadate and a cation exchange membrane (Nafion117) was evaluated. The electrochemical performance of VRFB was measured at a current density of 60 mA/cm2. The average current efficiency of VRFB using the electrolyte prepared from ammonium metavanadate was 94.9%, the average voltage efficiency was 82.2%, and the average energy efficiency was 78.0%. In addition, it was confirmed that the efficiencies of VRFB using the electrolyte prepared from ammonium metavanadate had almost the same value as the efficiencies of VRFB using the electrolyte prepared with vanadyl sulfate (VOSO4).