Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.3.236

A Newly Designed Fixed Bed Redox Flow Battery Based on Zinc/Nickel System  

Mahmoud, Safe ELdeen M.E. (Basic and Applied Science Department, College of Engineering and Technology, Arab Academy For Science And Technology And Maritime Transport)
Youssef, Yehia M. (Department of Industrial Engineering, College of Engineering and Technology, Arab Academy For Science And Technology And Maritime Transport)
Hassan, I. (Basic and Applied Science Department, College of Engineering and Technology, Arab Academy For Science And Technology And Maritime Transport)
Nosier, Shaaban A. (Department of Chemical Engineering, Faculty of Engineering, Alexandria University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.3, 2017 , pp. 236-243 More about this Journal
Abstract
A fixed-bed zinc/nickel redox flow battery (RFB) is designed and developed. The proposed cell has been established in the form of a fixed bed RFB. The zinc electrode is immersed in an aqueous NaOH solution (anolyte solution) and the nickel electrode is immersed in the catholyte solution which is a mixture of potassium ferrocyanide, potassium ferricyanide and sodium hydroxide as the supporting electrolyte. In the present work, the electrode area has been maximized to $1500cm^2$ to enforce an increase in the energy efficiency up to 77.02% at a current density $0.06mA/cm^2$ using a flow rate $35cm^3/s$, a concentration of the anolyte solution is $1.5mol\;L^{-1}$ NaOH and the catholyte solution is $1.5mol\;L^{-1}$ NaOH as a supporting electrolyte mixed with $0.2mol\;L^{-1}$ equimolar of potassium ferrocyanide and potassium ferricyanide. The outlined results from this study are described on the basis of battery performance with respect to the current density, velocity in different electrolytes conditions, energy efficiency, voltage efficiency and power of the battery.
Keywords
Fixed bed; Redox flow battery; Energy storage; Zinc/nickel RFB; Cost analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Alotto, M. Guarnieri, F. Moro, A review, Renew. Sustain. Energy Rev., 2014, 29 325-335.   DOI
2 Q. Xu and T. S. Zhao, Prog. Energy Combust. Sci., 2015, 49, 40-58.   DOI
3 K. Yesol, C. Seho, P. Se-Kook, J. Jae-Deok, L. Young-Seak, Appl. Chem. Eng., 2014, 25(3), 292-299.   DOI
4 H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim, and M. Skyllas-kazacos, Membr. 2012, 2, 275-306.   DOI
5 A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, J. Appl. Electrochem., 2011, 41(10), 1137-1164.   DOI
6 J.H. Yang, H.S. Yang, H.W. Ra, J. Shim, J. D. Jeon, J. Power Sour., 2015, 275, 294-297.   DOI
7 T.I. Evans, R.E. White, J. Electrochem. Soc., 1987, 134(4), 866-874.   DOI
8 M. Hromadova, W.R. Fawcett, J. Phys. Chem. A, 2001, 105(1), 104-111.   DOI
9 H.S. Lim, A.M. Lackner, R.C. Knechtli, J. Electrochem. Soc., 1977, 124(8),1154-1157.   DOI
10 L.Swette, V. Jalan, NASA CR-174724, DOE/NASA/0262e271, 1984.
11 C.P. de Leon, A. Frias-Ferrer, J. Gonzalez, D.A. Szanto, F.C.Walsh, J Power Sour., 2006, 160(1), 716-732.   DOI
12 Wu, H., J. R. Selman, P. Hollandsworth, Indian J. Technol, 1986, 24(7), 372-380.
13 Y.K. Zeng, X.L. Zhou, L. An, L. Wei, T. S. Zhao, J. Power Sour., 2016, 324, 738-744.   DOI
14 Z.P. Xie, D.B. Zhou, F.J. Xiong, S.M. Zhang, K.L. Huang, J. Rare. Earths, 2011, 29(6), 567-573.   DOI
15 G. Nikiforidis, L. Berlouis, D. Hall, D. Hodgson, J. Power Sour. 2012, 206, 497-503.   DOI
16 Z. Xie, Q. Liu, Z. Chang, and X. Zhang, Electrochim. Acta, 2013, 90, 695-704.   DOI
17 M.M. Ibrahim, I.H. Mohamed, Y. Youssef, 13th International Conference on Clean Energy (ICCE-2014) 2014, 312-321.
18 M. Skyllas-Kazacos, C. Menictas, T. Lim, Woodhead Publishing Limited, 2013.
19 C.P. de Leon, A.F. Ferrer, J. Power Sour, 2006, 160(1), 716-732.   DOI