Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.386

Study on a Separator for the Zn-Br Redox Flow Battery  

Na, Il-Chae (CNL Energy Co.)
Jo, Hong-Sic (Grad. School, Dept. Green Energy, Hoseo University)
Ryu, Cheol-Hwi (Grad. School, Dept. Green Energy, Hoseo University)
Hwang, Gab-Jin (Grad. School, Dept. Green Energy, Hoseo University)
Publication Information
Membrane Journal / v.24, no.5, 2014 , pp. 386-392 More about this Journal
Abstract
Two commercial membranes (porous membrane and cation exchange membrane) were evaluated as a separator in the Zn-Br redox-flow battery (ZBRFB). The performance properties of ZBRFB were test in the current density of $20mA/cm^2$. The electromotive forces (OCV at SOC 100%) of ZBRFB using SF-600 (porous membrane) and Nafion 117 (cation exchange membrane) were 1.87 V and 1.93 V, respectively. The cycle performance of ZBRFB using each membrane was evaluated during 7 cycles. The performance of ZBRFB using SF-600 membrane was 89.76%, 83.46% and 74.88% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of ZBRFB using Nafion117 membrane was 97.7%, 76.33% and 74.56% for average current efficiency, average voltage efficiency and average energy efficiency, respectively.
Keywords
Energy storage; Secondary battery; Redox flow battery; Zn-Br; Separator;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H.-S. Choi, Y.-H. Oh, C.-H. Ryu, and G.-J. Hwang, "Study on the electrolyte for Zn-Br redox flow battery", Trans. of the Korean Hydrogen and New Energy Society, 24(4), 347 (2013).   DOI   ScienceOn
2 G.-J. Hwang, A.-S. Kang, and H. Ohya, "Review for the redox flow secondary battery", Chemical Industry and Technology, 16(5), 455 (1998).
3 T. Nguyen and R. F. Savinell, "Flow batteries", The Electrochemical Society Interface, Fall 2010, pp. 54-56.
4 P. M. Hoobin, K. J. Cathro, and J. O. Niere, "Stability of zinc/bromine battery electrolytes", J. Appl. Electrochem., 19, 943 (1989).   DOI
5 W. Pell, "Zinc/bromine battery electrolytes: electrochemical, physicochemical and spectroscopic studies", A Thesis of degree of Doctor, University of Ottawa, Canada (1994).
6 H. S. Lim, A. M. Lackner, and R. C. Knechtli, "Zinc-bromine secondary battery", J. Eelctrochem. Sco.; Elctrochemical Science and Technology, 124(8), 1154 (1977).   DOI
7 P. Eidler, "Development of zinc/bromine batteries for load-leveling applications", SAND99-1853, Sandia National Lab., Phase I Final Report, USA (1999).
8 N. Clark, P. Eidler, and P. Lex, "Development of zinc/bromine batteries for load-leveling applications", SAND99-2691, Sandia National Lab., PhaseII Final Report, USA (1999).
9 D. M. Rose and S. R. Ferreira, "Initial test results from the Redflow 5 kW, 10 kWh zinc-bromine module", SAND2012-1352, Sandia National Lab. Report, USA (2012).
10 M. Xu, D. G. Ivey, Z. Xie, W. Qu, and E. Dy, "The state of water in 1-butly-1-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide and its effect on Zn/Zn(II) redox behavior", Electrochimica Acta, 97, 289 (2013).   DOI   ScienceOn
11 NEDO, "NEDOhouyu kougyosyoyuuken nnadono tabunnyaheno ouyoukanousei syousa (III), Heisei 7nen (nijidentiniyoru dennryoku zoutyou kannrenn)", NEDO Report, NEDO-P-9519, Japan (1994).
12 D. J. Kim, and S. Y. Nam, "Research trend of polymeric ion exchnage membrane for vanadium redox flow battery", Membrane Journal, 22(5), 285 (2012).
13 C. J. Park, I. H. Kim, S. P. Kim, H. M. Lee, S. I. Cheong, H. S. Choi, and J. W. Rhim, "Preparation of poly(ethylenimine) anionic exchange membrane impregnated in porous polyethylene membranes", Membrane Journal, 21(1), 91 (2011).
14 D. H. Kim, H. I. Cho, B. S. Lee, B. P. Hong, S. Y. Lee, S. Y. Nam, M. S. Seo, J. W. Rhim, and H. S. Byun, "Studies on the secondary battery application of the surface fluorinated microporous PE separator membranes", Membrane Journal, 18(1), 75 (2008).
15 H.-S. Choi, Y.-H. Oh, C.-H. Ryu, and G.-J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Inst. Chem. Eng., in press (2014).
16 T. J. Simons, A. A. J. Torriero, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, "High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of $Zn^{2+}$ salt and water concentration", Electro. Commu., 18, 119 (2012).   DOI   ScienceOn