DOI QR코드

DOI QR Code

Study on the Vanadium Redox Flow Battery using Cation Exchange Membrane and Ammonium Metavanadate

메타바나듐산암모늄과 양이온교환막을 활용한 바나듐 레독스 흐름전지에 관한 연구

  • 정보영 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2021.08.04
  • Accepted : 2021.08.20
  • Published : 2021.08.31

Abstract

The electrochemical performance of all vanadium redox flow battery (VRFB) using an electrolyte prepared from ammonium metavanadate and a cation exchange membrane (Nafion117) was evaluated. The electrochemical performance of VRFB was measured at a current density of 60 mA/cm2. The average current efficiency of VRFB using the electrolyte prepared from ammonium metavanadate was 94.9%, the average voltage efficiency was 82.2%, and the average energy efficiency was 78.0%. In addition, it was confirmed that the efficiencies of VRFB using the electrolyte prepared from ammonium metavanadate had almost the same value as the efficiencies of VRFB using the electrolyte prepared with vanadyl sulfate (VOSO4).

메타바나듐산 암모늄으로 제조한 전해액과 양이온교환막인 Nafion117을 활용하는 바나듐 레독스 흐름 전지(vanadium redox flow battery, VRFB)의 전기화학적 성능을 평가하였다. VRFB의 전기화학적 성능은 전류밀도 60 mA/cm2에서 측정하였다. 메타바나듐산 암모늄으로 제조된 전해액을 사용한 VRFB의 평균 전류효율은 94.9%, 평균 전압효율은 82.2%, 평균 에너지효율은 78.0%를 보였다. 그리고 메타바나듐산 암모늄으로 제조된 전해액을 사용한 VRFB의 각 효율은 바나딜 설페이트(VOSO4)로 제조된 전해액을 사용한 VRFB의 각 효율과 비교하여 거의 동등한 값을 갖는다는 것을 확인하였다.

Keywords

References

  1. G.-J. Hwang, A.-S. Kang, H. Ohya, "Research review of the redox-flow battery", Chem. Ind. Tech., 16(5), 455 (1998).
  2. H.-S. Choi, J.-C. Kim, C.-H. Ryu, G.-J. Hwang, "Research review of the all vanadium redox-flow battery for large scale power storage," Membr. J., 21(2), 107 (2011).
  3. M. Skyllas-Kazacos, E. Sum, "A study of the V(II)/V(III) redox couple for redox flow cell application", J. Power Sources, 15, 179 (1985). https://doi.org/10.1016/0378-7753(85)80071-9
  4. G.-J. Hwang, H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  5. G.-J. Hwang, H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 132(1), 55 (1997). https://doi.org/10.1016/S0376-7388(97)00040-9
  6. N. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, M. Kamimoto, "Vanadium redox reactions and carbon electrodes for vanadium redox flow battery", Electrochim. Acta, 36, 1191 (1991). https://doi.org/10.1016/0013-4686(91)85108-J
  7. D. Yang, G. Guo, J. Hu, C. Wang, D. Jiang, "Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes", J. Mater. Chem., 18, 350 (2008). https://doi.org/10.1039/B713467C
  8. L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, "Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery", Carbon, 48, 3079 (2010). https://doi.org/10.1016/j.carbon.2010.04.044
  9. T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, A. Su, "Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery", J. Solid State Electrochem., 16, 579 (2012). https://doi.org/10.1007/s10008-011-1383-y
  10. X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, "Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery", Electrochim. Acta, 138, 264 (2014). https://doi.org/10.1016/j.electacta.2014.06.124
  11. F. Rahman, M. Skyllas-Kazacos, "Solubility of vanadyl sulfate in concentrated sulfuric acid solutions", J. Power Sources, 72, 105 (1998). https://doi.org/10.1016/S0378-7753(97)02692-X
  12. M. Skyllas-Kazacos, C. Menictas, M. Kazacos, "Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell", J. Eelctrochem. Soc., 143, 86 (1996).
  13. M. Kazacos, M. Cheng, M. Skyllas-Kazacos, "Vanadium redox cell electrolyte optimization studies", J. Appl. Electrochem., 20, 463 (1990). https://doi.org/10.1007/BF01076057
  14. S. Li, K. Huang, S. Liu, D. Fang, X. Wu, D. Lu, T. Wu, "Effect of organic additives on positive electrolyte for vanadium redox battery", Electrochim. Acta, 56, 5483 (2011). https://doi.org/10.1016/j.electacta.2011.03.048
  15. F. Chang, C. Hu, X. Liu, L. Liu, J. Zhang, "Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery", Electrochim. Acta, 60, 334 (2012). https://doi.org/10.1016/j.electacta.2011.11.065
  16. S. Peng, N. Wang, C. Gao, Y. Lei, X. Liang, S. Liu, Y. Liu, "Stability of positive electrolyte containing trishydroxymethyl amiomethane additive for vanadium redox flow battery", Int. J. Electrochem. Sci., 7, 4388 (2012).
  17. G. Wang, J. Chen, X. Wang, J. Tian, H. Kang, X. Zhu, Y. Zhang, X. Liu, R. Wang, "Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery", J. Energy Chem., 23, 73 (2014). https://doi.org/10.1016/S2095-4956(14)60120-0
  18. J.-G. Kim, S.-H. Lee, S.-I Choi, C.-S. Jin, J.-C. Kim, C.-H Ryu and G.-J. Hwang, "Application of Psf-PPSS-TPA composite membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., 16, 756 (2010). https://doi.org/10.1016/j.jiec.2010.07.007
  19. G. Shukla, V. K. Shahi, "Amine functionalized graphene oxide C16 chain grafted with poly(ether sulfone) by DABCO coupling: anaion exchange membrane for vanadium redox flow battery", J. Membr. Sci., 575, 109 (2019). https://doi.org/10.1016/j.memsci.2019.01.008
  20. L. Zeng, T. S. Zhao, L. Wei, H. R. Jiang, M.C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: current status and challenges", Applied Energy, 233, 622 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
  21. J.-M. Lee, M.-S. Lee, K.-S. Nam, J-D. Jeon, Y.-G. Yoon, Y.-W. Choi, "A study on the effect of different functional groups in anion exchange membranes for vanadium redox flow batteries", Membr. J., 27(5), 415 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.415
  22. D.-J. Kim, S.-Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", Membr. J., 22(5), 285 (2012).
  23. J. Hou, Y. Liu, Y. Liu, L. Wu, Z. Yang, T. Xu, "Self-healing anion exchange membrane for pH 7 redox flow batteries", Chem. Eng. Sci., 201, 167 (2019). https://doi.org/10.1016/j.ces.2019.02.033
  24. Y.-J. Kim, D.-H. Kim, M.-S. Kang, "Optimum design of pore-filled anion-exchange membranes for efficient all-vanadium redox flow batteries", Membr. J., 30(1), 21 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.21
  25. Y.-J. Kim, D.-H. Kim, M.-S. Kang, "Aminopropyl functionalized silica nanoparticle dispersed Nafion composite membranes for vanadium redox flow batteries", Membr. J., 30(5), 307 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.307
  26. KETEP Research report No. 20132020102170, "The development of 200 kW class RFB's stack and system as a ESS for management of load leveling and black-out" (2016).
  27. A. Negishi, K. Nozaki, H. Kaneko, "Electrolyte of vanadium redox flow battery for load leveling", Bulletin of the Electrotechnical Lab., 63(45), 163 (1999).