• 제목/요약/키워드: Real separable Banach space

검색결과 12건 처리시간 0.021초

Complete convergence for weighted sums of arrays of random elements

  • Sung, Soo-Hak
    • 대한수학회지
    • /
    • 제32권4호
    • /
    • pp.679-688
    • /
    • 1995
  • Let $(B, \left\$\mid$ \right\$\mid$)$ be a real separable Banach space. Let $(\Omega, F, P)$ denote a probability space. A random elements in B is a function from $\Omega$ into B which is $F$-measurable with respect to the Borel $\sigma$-field $B$(B) in B.

  • PDF

ISOMETRIC REFLECTIONS IN TWO DIMENSIONS AND DUAL L1-STRUCTURES

  • Garcia-Pacheco, Francisco J.
    • 대한수학회보
    • /
    • 제49권6호
    • /
    • pp.1275-1289
    • /
    • 2012
  • In this manuscript we solve in the positive a question informally proposed by Enflo on the measure of the set of isometric reflection vectors in non-Hilbert 2-dimensional real Banach spaces. We also reformulate equivalently the separable quotient problem in terms of isometric reflection vectors. Finally, we give a new and easy example of a real Banach space whose dual has a non-trivial L-summand that does not come from an M-ideal in the predual.

A BANACH ALGEBRA AND ITS EQUIVALENT SPACES OVER PATHS WITH A POSITIVE MEASURE

  • Cho, Dong Hyun
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.809-823
    • /
    • 2020
  • Let C[0, T] denote the space of continuous, real-valued functions on the interval [0, T] and let C0[0, T] be the space of functions x in C[0, T] with x(0) = 0. In this paper, we introduce a Banach algebra ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ on C[0, T] and its equivalent space ${\bar{\mathcal{F}}}({\mathcal{H}}) $, a space of transforms of equivalence classes of measures, which generalizes Fresnel class 𝓕(𝓗), where 𝓗 is an appropriate real separable Hilbert space of functions on [0, T]. We also investigate their properties and derive an isomorphism between ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ and ${\bar{\mathcal{F}}}({\mathcal{H}}) $. When C[0, T] is replaced by C0[0, T], ${\bar{\mathcal{F}}}({\mathcal{H}}) $ and ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ reduce to 𝓕(𝓗) and Cameron-Storvick's Banach algebra 𝓢, respectively, which is the space of generalized Fourier-Stieltjes transforms of the complex-valued, finite Borel measures on L2[0, T].

RELATIONS BETWEEN THE ITO PROCESSES

  • Choi, Won
    • 대한수학회논문집
    • /
    • 제10권1호
    • /
    • pp.207-213
    • /
    • 1995
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measure on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$-algebras of F. If $r > 0$, let $J = [-r,0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert = sup_{s \in J}$\mid$\gamma(s)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E,F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$.

  • PDF

A NOTE ON ITO PROCESSES

  • Park, Won
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.731-737
    • /
    • 1994
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measures on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$- algebras of F. If $r > 0$, let $J = [-r, 0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert_C = sup_{s \in J} $\mid$\gamma(x)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E and F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$ with the norm $\Vert T \Vert = sup {$\mid$T(x)$\mid$_F : x \in E, $\mid$x$\mid$_E \leq 1}$.

  • PDF

Weak laws of large numbers for weighted sums of Banach space valued fuzzy random variables

  • Kim, Yun Kyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.215-223
    • /
    • 2013
  • In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in a separable real Banach space. First, we give weak laws of large numbers for weighted sums of strong-compactly uniformly integrable fuzzy random variables. Then, we consider the case that the weighted averages of expectations of fuzzy random variables converge. Finally, weak laws of large numbers for weighted sums of strongly tight or identically distributed fuzzy random variables are obtained as corollaries.

SUPERCYCLICITY OF ℓp-SPHERICAL AND TORAL ISOMETRIES ON BANACH SPACES

  • Ansari, Mohammad;Hedayatian, Karim;Khani-Robati, Bahram
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.653-659
    • /
    • 2017
  • Let $p{\geq}1$ be a real number. A tuple $T=(T_1,{\ldots},T_n)$ of commuting bounded linear operators on a Banach space X is called an ${\ell}^p$-spherical isometry if ${\sum_{i=1}^{n}}{\parallel}T_ix{\parallel}^p={\parallel}x{\parallel}^p$ for all $x{\in}X$. The tuple T is called a toral isometry if each Ti is an isometry. By a result of Ansari, Hedayatian, Khani-Robati and Moradi, for every $n{\geq}1$, there is a supercyclic ${\ell}^2$-spherical isometric n-tuple on ${\mathbb{C}}^n$ but there is no supercyclic ${\ell}^2$-spherical isometry on an infinite-dimensional Hilbert space. In this article, we investigate the supercyclicity of ${\ell}^p$-spherical isometries and toral isometries on Banach spaces. Also, we introduce the notion of semicommutative tuples and we show that the Banach spaces ${\ell}^p$ ($1{\leq}p$ < ${\infty}$) support supercyclic ${\ell}^p$-spherical isometric semi-commutative tuples. As a result, all separable infinite-dimensional complex Hilbert spaces support supercyclic spherical isometric semi-commutative tuples.

A NOTE ON SUMS OF RANDOM VECTORS WITH VALUES IN A BANACH SPACE

  • Hong, Dug-Hun;Kwon, Joong-Sung
    • 대한수학회논문집
    • /
    • 제10권2호
    • /
    • pp.439-442
    • /
    • 1995
  • Let ${X_n : n = 1,2,\cdots}$ be a sequence of pairwise independent identically distributed random vectors taking values in a separable Hilbert space H such that $E \Vert X_1 \Vert = \infty$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and for any real $\alpha$ with $0 < \alpha < 1$ define a sequence ${\gamma_n(\alpha)}$ as $\gamma_n(\alpha) = inf {r : P(\Vert S_n \Vert \leq r) \geq \alpha}$. Then $$ lim_{n \to \infty} sup \Vert S_n \Vert/\gamma_n(\alpha) = \infty $$ holds. This is a generalization of Vvedenskaya[2].

  • PDF

Review on the Limiting Behavior of Tail Series of Independent Summands

  • Nam, Eun-Woo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.185-190
    • /
    • 2005
  • For the almost certainly convergent series $S_n$ of independent random variables the limiting behavior of tail series ${T_n}{\equiv}S-S_{n-1}$ is reviewed. More specifically, tail series strong laws of large number and tail series weak laws of large numbers will be introduced, and their relationship will be investigated. Then, the relationship will also be extended to the case of Banach space valued random elements, by investigating the duality between the limiting behavior of the tail series of random variables and that of random elements.

  • PDF

CHANGE OF SCALE FORMULAS FOR CONDITIONAL WIENER INTEGRALS AS INTEGRAL TRANSFORMS OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • Cho, Dong-Hyun
    • 대한수학회논문집
    • /
    • 제22권1호
    • /
    • pp.91-109
    • /
    • 2007
  • In this paper, we derive a change of scale formula for conditional Wiener integrals, as integral transforms, of possibly unbounded functions over Wiener paths in abstract Wiener space. In fact, we derive the change of scale formula for the product of the functions in a Banach algebra which is equivalent to both the Fresnel class and the space of measures of bounded variation over a real separable Hilbert space, and the $L_p-type$cylinder functions over Wiener paths in abstract Wiener space. As an application of the result, we obtain a change of scale formula for the conditional analytic Fourier-Feynman transform of the product of the functions.