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ISOMETRIC REFLECTIONS IN TWO DIMENSIONS AND

DUAL L
1-STRUCTURES

Francisco J. Garćıa-Pacheco

Abstract. In this manuscript we solve in the positive a question infor-
mally proposed by Enflo on the measure of the set of isometric reflection
vectors in non-Hilbert 2-dimensional real Banach spaces. We also refor-
mulate equivalently the separable quotient problem in terms of isometric
reflection vectors. Finally, we give a new and easy example of a real Ba-
nach space whose dual has a non-trivial L-summand that does not come
from an M -ideal in the predual.

1. Isometric reflection vectors in 2-dimensional spaces

The concept of isometric reflection vector seems to have been officially in-
troduced by Skorik and Zaidenberg in [13].

Definition 1.1 (Skorik and Zaidenberg, [13]). Let X be a real Banach space.
A vector e ∈ X with ‖e‖ = 1 is said to be an isometric reflection vector if
there exists a closed, maximal subspace M of X such that X = Re ⊕M and
‖λe +m‖ = ‖λe −m‖ for every m ∈ M and every λ ∈ R. We will denote by
ρe : X −→ X the surjective linear isometry so that ρe (λe+m) = λe −m for
every λ ∈ R and every m ∈M .

Several results of [13] can be summarized into the following one.

Theorem 1.2 (Skorik and Zaidenberg, [13]). Let X be a real Banach space.

The following are equivalent:

(1) X is a Hilbert space.

(2) The set of isometric reflection vectors is dense in the unit sphere.

In [3] the authors generalize the previous theorem as follows.

Theorem 1.3 (Becerra-Guerrero and Rodŕıguez-Palacios, [3]). Let X be a real

Banach space. The following are equivalent:

(1) X is a Hilbert space.
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(2) The set of the isometric reflection vectors has non-empty interior in

the unit sphere.

In [2] it is provided a shorter proof of the previous result. The key of
this shortening relies on restricting to 2-dimensions. In Fall 2004, when the
author of this manuscript was a graduate student at the Math Department of
Kent State University, Per Enflo and the author had a conversation about this
shortening, moment at which Enflo asked the author the following question:

Question 1.4. Let X be a finite dimensional real Banach space. Consider on
the unit sphere of X a Borel probability measure µ such that µ ({x}) = 0 for all
x ∈ X such that ‖x‖ = 1. Assume that the set of isometric reflection vectors
has positive µ-measure. Is then X a Hilbert space?

We would like to let the reader notice that the set of isometric reflection
vectors is closed, and hence it is a Borel subset of the unit sphere. Therefore,
the previous questions is well formulated. Before presenting any results on the
previous question we would like to remark a couple of things.

Remark 1.5. Given a real Banach space we will let BX (x, r) denote the (closed)
ball of center x and radius r. As expected, BX and SX will denote the (closed)
unit ball and the unit sphere of X , respectively. On the other hand, let ‖·‖0
and ‖·‖1 be two equivalent norms on X . The map

(1.1)
S(X,‖·‖0)

→ S(X,‖·‖1)

x 7→
x

‖x‖1
is an homeomorphism.

Next, we will show an example, on any finite dimensional real Banach space
X , of a Borel probability measure µ on SX such that µ ({x}) = 0 for all x ∈ SX .

Example 1.6. Let X be an n-dimensional real Banach space. Choose an
isomorphism ψ : Rn → X . This induces an homeomorphism between the unit
sphere Sn−1 in R

n and SX as follows:

φ : Sn−1 → SX

x 7→ φ (x) := ψ(x)
‖ψ(x)‖ .

This homeomorphism also defines a Borel probability measure on SX as follows:

µ (A) := µSn−1

(
φ−1 (A)

)
,

where A is a Borel subset of SX and µSn−1 is the standard measure on Sn−1.
Notice that µ depends on the choice of ψ.

As a partial positive answer to Question 1.4 we will prove the following:

Theorem 1.7 (Isometric Reflection Dichotomy Theorem). Let X be a 2-
dimensional real Banach space. Only one of the following two possibilities

holds:
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(1) X is a Hilbert space.

(2) The set of isometric reflection vectors is empty or finite.

Before moving into the details of the proof of the previous result we will
need the following lemma.

Lemma 1.8. Let X be a 2-dimensional real Banach space X. Let a, b ∈ SX

with a 6= ±b. Denote

⌊a, b⌋ :=

{
ta+ (1− t) b

‖ta+ (1− t) b‖
: t ∈ [0, 1]

}
.

Then

(1) ⌊a, b⌋ ⊆ BX (a, ‖a− b‖) .
(2) If f ∈ X∗ is the unique functional such that f (a) = f (b) = 1, then

⌊a, b⌋ ⊆ f−1 [1,+∞) ∩ SX .

(3) The equality holds above if and only if [a, b] is a maximal segment in

BX .

Assume, in addition, that b is an isometric reflection vector. Then

(4) ρb (⌊a, b⌋) = ⌊b, ρb (a)⌋.
(5) ⌊a, b⌋ ∩ ⌊b, ρb (a)⌋ = {b}.
(6) ⌊a, b⌋ ∪ ⌊b, ρb (a)⌋ is connected.

(7) If ‖a− b‖ < 1, then ⌊a, b⌋ ∪ ⌊b, ρb (a)⌋ = ⌊a, ρb (a)⌋.

Proof.

(1) It is a direct consequence of [7, Lemma 3.1].
(2) For any t ∈ [0, 1] we have that ‖ta+ (1− t) b‖ ≤ 1, therefore

f

(
ta+ (1− t) b

‖ta+ (1− t) b‖

)
=

1

‖ta+ (1− t) b‖
≥ 1.

(3) Assume that

⌊a, b⌋ = f−1 [1,+∞) ∩ SX .

If [a, b] is not a maximal segment in BX , then there exists a number t ∈
(−∞, 0)∪(1,∞) such that ta+(1− t) b ∈ SX . Obviously, ta+(1− t) b ∈
f−1 [1,+∞) ∩ SX , but ta+ (1− t) b /∈ ⌊a, b⌋. Conversely, assume that
[a, b] is a maximal segment in BX . Let x ∈ f−1 [1,+∞) ∩ SX \ ⌊a, b⌋.
The convexity of BX forces a, b, and x to be aligned, therefore the
segment containing them is in the unit sphere and hence [a, b] cannot
be maximal.

Assume that b is an isometric reflection vector:

(4) If t ∈ [0, 1], then

ρb

(
ta+ (1− t) b

‖ta+ (1− t) b‖

)
=

tρb (a) + (1− t) b

‖tρb (a) + (1− t) b‖
,

since ρb is a surjective linear isometry that fixes b.
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(5) Write ρb (a) = γb + δa with γ, δ ∈ R. Notice that, since a and b are
linearly independent, we have that both δ and γ are different from 0.
Besides, a = γb+ δρb (a) and hence

ρb (a) = −
γ

δ
b+

1

δ
a.

As a consequence, δ = −1. Assume that there exist t, s ∈ [0, 1) such
that

tb+ (1− t) a

‖tb+ (1− t) a‖
=

sb+ (1− s) ρb (a)

‖sb+ (1− s) ρb (a)‖
,

Then

ρb (a) =
‖sb+ (1− s) a‖ (1− t)

(1− s) ‖tb+ (1− t) a‖
a

+
‖sb+ (1− s) a‖

(1− s)

(
t

‖tb+ (1− t) a‖
−

s

‖sb+ (1− s) a‖

)
b.

Therefore
‖sb+ (1− s) a‖ (1− t)

(1− s) ‖tb+ (1− t) a‖
= −1,

which is impossible.
(6) ⌊a, b⌋ ∪ ⌊b, ρb (a)⌋ is the union of two connected sets whose intersection

is non-empty.
(7) If ‖a− b‖ < 1, then ‖a− ρb (a)‖ < 2. Then ⌊a, b⌋ ∪ ⌊b, ρb (a)⌋ is a

connected set in SX joining a and ρb (a) and not containing −a or
−ρb (a). Thus ⌊a, b⌋ ∪ ⌊b, ρb (a)⌋ = ⌊a, ρb (a)⌋. �

In virtue of the previous lemma we have the following short, but not less
important, remark. We spare the details of the proof to the reader.

Remark 1.9. Let X be a 2-dimensional real Banach space. Let e0, e1 ∈ SX be
isometric reflection vectors. We define the following recursive sequence:

en := ρen−1
(en−2) for all n ≥ 2.

Notice the following:

• For every n ≥ 2 we clearly have that en is an isometric reflection vector
of X . Indeed, simply take into consideration that ρen−1

is a surjective
linear isometry on X for n ≥ 2, and surjective linear isometries map
isometric reflection vectors into isometric reflection vectors.

• For every n ≥ 1 it is clear that

‖en − en−1‖ =
∥∥ρen−1

(en−2)− ρen−1
(en−1)

∥∥
= ‖en−1 − en−2‖

= · · ·

= ‖e1 − e0‖ .
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• If e0 6= ±e1, then it is also clear, in virtue of the previous item and the
fifth item of Lemma 1.8, that

SX =
⋃

n≥0

⌊en, en+1⌋ ⊆
⋃

n≥0

BX (en, ‖e1 − e0‖) .

• The sequence (en)n∈N
might be a periodic sequence. For instance:

(1) If e0 = e1, then en = e0 for all n ≥ 0.
(2) If e0 = −e1, then en = e0 if n is even and en = −e0 if n is odd.
(3) If e0 and e1 are in isometric reflection, that is, X = Re0⊕Re1 and

‖λe0 + γe1‖ = ‖λe0 − γe1‖ for all λ, γ ∈ R, then
e2 = −e0, e3 = −e1, e4 = e0, . . . .

Observe that in this case we have that

SX = ⌊e0, e1⌋ ∪ ⌊e1, e2⌋ ∪ ⌊e2, e3⌋ ∪ ⌊e3, e4⌋

simply because e0 6= ±e1.

Now we are ready to prove the Isometric Reflection Dichotomy Theorem:

Proof of Theorem 1.7. Assume that there is an infinite sequence (an)n∈N
⊂ SX

of isometric reflection vectors. Since SX is compact, we can assume that the
previous sequence is actually convergent. Our aim is at proving that the set
of isometric reflection vectors is dense in SX , which will be sufficient in virtue
of either [13] or [3]. Fix an arbitrary 0 < ε < 1. There are n,m ∈ N such
that ‖an − am‖ ≤ ε. We may rename an and am as e0 and e1 respectively.
According to Remark 1.9, there exists a sequence of isometric reflection vectors
(en)n≥0 ⊂ SX such that ‖en − en−1‖ ≤ ε for all n ∈ N and

SX ⊂
⋃

n≥0

BX (en, ε) .

Since ε was arbitrarily fixed, we conclude that the set of isometric reflection
vectors is dense in SX . �

Corollary 1.10. Let X be a 2-dimensional real Banach space. Let µ be a Borel

probability measure on SX such that µ ({x}) = 0 for all x ∈ SX . If the set of

isometric reflection vectors has positive µ-measure, then X is a Hilbert space.

Remark 1.11. The Isometric Reflection Dichotomy Theorem fails in any di-
mension strictly higher than 2. Indeed, let X be any real Banach space of
dimension strictly higher than 2. We will equivalently renorm X to fail the
Isometric Reflection Dichotomy Theorem. It is easy to understand that X is
isomorphic to a space of the form ℓ22 ⊕∞ M , where M is a non-zero real Ba-
nach space. Now observe that the unit sphere of ℓ22 ⊕∞ M has infinitely many
isometric reflection vectors but ℓ22 ⊕∞ M is not a Hilbert space.
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2. Applications to the separable quotient problem

The separable quotient problem is an old and famous problem originally
stated by Pelcynzki. However, it was Rosenthal who was the first one to state
it in its best known form (see [11]). We refer the reader to [10] for a recopilation
of recent results about this problem.

Problem 2.1 (Rosenthal, [11]). Let X be an infinite dimensional, real Banach
space. Does X admit an infinite dimensional, separable quotient?

The main result in this section is strongly motivated by the following equiv-
alent form of the separable quotient problem (see [12]). We first remind the
reader a couple of things:

• A barrel in a real topological vector space is a closed, absolutely convex
subset.

• A real topological vector space is said to be barrelled if every barrel
has non-empty interior, or equivalently, is a neighborhood of 0.

Theorem 2.2 (Saxon and Wilanski, [12]). Let X be an infinite dimensional,

real Banach space. The following conditions are equivalent:

(1) X admits an infinite dimensional, separable quotient.

(2) There exists a non-barrelled, dense subspace Y of X.

The idea is to reformulate the previous theorem in terms of isometric reflec-
tion vectors. Notice that the previous result states that if an infinite dimen-
sional Banach space X admits an infinite dimensional separable quotient, then
X has a non-barreled dense subspace Y , that is, a dense subspace Y with a
barrel that has empty interior in Y . We will go a little further on this and
we will show that if X has an infinite dimensional separable quotient, then X
has a dense subspace Y with a bounded complete barrel that has empty inte-
rior in Y . For this we will make use of the concept of Markushevich basis: A
pair

[
(ei)i∈I ⊂ X, (e∗i )i∈I ⊂ X∗

]
is said to be a Markushevich basis when it is

biorthogonal (e∗i (ej) = δij for all i, j ∈ I), total (span {e∗i : i ∈ I} is ω∗-dense
in X∗), and fundamental (span {ei : i ∈ I} is dense in X).

Lemma 2.3. Let X be an infinite dimensional, separable, real Banach space.

Let
[
(en)n∈N

⊂ SX , (e
∗
n)n∈N

⊂ X∗
]
be a Markushevich basis for X. The linear

operator

(2.1)
ℓ1 −→ X

(tn)n∈N
7−→

∑∞
n=1 tnen

maps ω∗-closed, bounded subsets of ℓ1 to sequentially ω-closed subsets of X. As

a consequence, the set

(2.2)

{
∞∑

n=1

tnen : (tn)n∈N
∈ Bℓ1

}
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is closed in X, and therefore it has empty interior in X if and only if it has

empty interior in its linear span.

Proof. Let A be a ω∗-closed, bounded subset of ℓ1. Let (xi)i∈N
be a sequence

in the image of A under the operator (2.1), and assume that (xi)i∈N
is ω-

convergent to some x0 ∈ X . For every i ∈ N, we can write

xi =

∞∑

n=1

tinen,

where
(
tin
)
n∈N

∈ A. For every n ∈ N, we will denote e∗n (x0) by t0n. If we fix
n ∈ N, then

lim
i→∞

tin = lim
i→∞

e∗n (xi) = e∗n (x0) = t0n.

Since A is bounded, the Banach-Steinhauss Theorem tells us that
(
t0n
)
n∈N

∈ ℓ1
and

(
tin
)
n∈N

ω∗

−→
(
t0n
)
n∈N

as i→ ∞.

Since A is ω∗-closed we deduce that
(
t0n
)
n∈N

∈ A. Finally, if x0 6=
∑∞
n=1 t

0
nen,

then there is m ∈ N such that

t0m = e∗m (x0) 6= e∗m

(
∞∑

n=1

t0nen

)
= t0m,

which is impossible. �

Lemma 2.4. Let X be an infinite dimensional, separable, real Banach space.

Let
[
(en)n∈N

⊂ SX , (e
∗
n)n∈N

⊂ X∗
]
be a Markushevich basis for X. The follow-

ing statements are equivalent:

(1) The basis (en)n∈N
is a Schauder basis equivalent to the ℓ1-basis.

(2) The operator

(2.3)
ℓ1 −→ X

(tn)n∈N
7−→

∑∞
n=1 tnen

is an isomorphism.

(3) The set

(2.4)

{
∞∑

n=1

tnen : (tn)n∈N
∈ Bℓ1

}

has non-empty interior.

Proof. Assume that (1) holds. The operator given in (2.3) is onto, therefore it
is an isomorphism in accordance to the Open Mapping Theorem. Now, assume
that (2) holds. The set given in (2.4) has non-empty interior because it is
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exactly the image under the isomorphism given in (2.3) of the closed unit ball
Bℓ1 . Finally, assume that (3) holds. There exists r > 0 such that

BX (0, r) ⊆

{
∞∑

n=1

tnen : (tn)n∈N
∈ Bℓ1

}
.

If x ∈ X\ {0}, then

rx

‖x‖
∈ BX (0, r) ⊆

{
∞∑

n=1

tnen : (tn)n∈N
∈ Bℓ1

}
.

Thus, there exists a sequence (sn)n∈N
∈ Bℓ1 so that

rx

‖x‖
=

∞∑

n=1

snen.

In order words,

x =

∞∑

n=1

‖x‖ sn
r

en

and (‖x‖ sn/r)n∈N
∈ ℓ1. �

Lemma 2.5. Let X be an infinite dimensional, separable, real Banach space.

There exists a normalized Markushevich basis for X which is not a Schauder

basis equivalent to the ℓ1-basis.

Proof. In virtue of Lemma 2.4, we can assume that X is isomorphic to ℓ1.
Denote by (en)n∈N

the canonical basis of ℓ1. Consider the sequence (un)n∈N

given by u1 = e1 and un = (en − en−1) /2 for n ≥ 2. It is well known that
(un)n∈N

is a Schauder basis in ℓ1 (see, for instance, [5]). However,

∞∑

n=1

1

n
un =

3

4
e1 +

1

2

∞∑

n=2

1

n (n+ 1)
en.

Therefore, (un)n∈N
is not equivalent to the ℓ1-basis. �

Lemma 2.6. Let X be an infinite dimensional, real Banach space. If X admits

an infinite dimensional, separable quotient, then there exists a proper, dense

subspace E of X and a bounded, complete barrel M of E with empty interior

in E.

Proof. Let Z be a closed subspace of X such that X/Z is an infinite dimen-
sional, separable Banach space. Let p : X → X/Z be the canonical projection
of X onto X/Z. By Lemma 2.5, we can find a bounded sequence (en)n∈N

⊂ X
such that (p (en))n∈N

is a Markushevich basis for X/Z contained in SX/Z which
is not a Schauder basis equivalent to the ℓ1–basis. By Lemma 2.3, the set

{
∞∑

n=1

tnp (en) : (tn)n∈N
∈ Bℓ1

}
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is closed. And, by Lemma 2.4, the above set has empty interior in its linear
span. Now, consider

M := co

({
∞∑

n=1

tnen : (tn)n∈N
∈ Bℓ1

}
∪ BZ

)

and E := span (M). Note that

M ⊆ p−1

({
∞∑

n=1

tnp (en) : (tn)n∈N
∈ Bℓ1

})
.

Finally, since p is continuous and open, we deduce that E is a dense subspace
of X and M is a bounded barrel of E with empty interior in E and closed in
X . �

Observe that, according to Theorem 2.2, the previous lemma is actually
a characterization of real Banach spaces admitting an infinite dimensional,
separable quotient. Before stating and proving the main result in this section
we will make some remarks and reminders.

Remark 2.7. Let X be a real Banach space.

• Assume that e ∈ SX is an isometric reflection vector of e. The only
functional e∗ ∈ X∗ such that e∗ (e) = 1 and ker (e∗) = ker (ρe) is called
the isometric reflection functional associated to e. In [2] it is shown
that e∗ ∈ SX∗ and that it is an isometric reflection vector of X∗.

• Consider a vector e ∈ SX and a closed, maximal subspaceM of X such
that X = Re⊕M . The following conditions are equivalent:
(1) ‖m+ λe‖ = ‖m− λe‖ for all λ ∈ R and all m ∈M .
(2) For all λ ∈ R and all m ∈M , if λe+m ∈ SX , then also m− λe ∈

SX .

Theorem 2.8. Let X be a real Banach space. Let e ∈ SX and e∗ ∈ SX∗ such

that e∗ (e) = 1. If X admits an infinite dimensional, separable quotient, then

X can be equivalently renormed so that

• e is an isometric reflection vector and e∗ is the isometric reflection

functional associated to e.
• span(((e∗)−1(1) ∩ BX)− e) is a proper dense subspace of ker (e∗).

Proof. Note that ker (e∗) also has an infinite dimensional, separable quotient.
Therefore, by Lemma 2.6, there exists a proper, dense subspace E of ker (e∗)
and a bounded, complete barrel M of E with empty interior in E. Observe
that we can assume without any loss of generality that M ⊂ Bker(e∗). Now, X
can be endowed with the equivalent norm whose unit ball is

B = co
(
Bker(e∗) ∪ (M + e) ∪ (M − e)

)
.

(1) The reader may notice that co
(
Bker(e∗) ∪ {e,−e}

)
has non-empty in-

terior and so does B. Thus, B is indeed the unit ball of an equivalent
norm on X .
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(2) e ∈ bd (B) (the boundary of B) because e∗ (e) = 1 = sup e∗ (B).
(3) If φ ∈ X∗, then the linear function ψ : X → R defined as ψ (v + λe) =

φ (v − λe) for all v ∈ ker (e∗) and all λ ∈ R verifies that

supφ (B) = supψ (B) .

Indeed, it suffices to observe that if t, s, r ∈ [0, 1] with t + r + s = 1,
m,m′ ∈M , and b ∈ Bker(e∗), then

tb+ s (m+ e) + r (m− e) , tb+ r (m+ e) + s (m− e) ∈ B

and

ψ (tb+ r (m+ e) + s (m′ − e)) = φ (tb+ s (m+ e) + r (m′ − e)) .

(4) e is an isometric reflection vector of X endowed with the B-norm.
Indeed, we will rely on Remark 2.7. Let γ ∈ R and z ∈ ker (e∗) such
that γe + z ∈ bd (B). There exists φ ∈ X∗ such that 1 = supφ (B) =
φ (γe+ z). Define ψ : X → R as ψ (v + λe) = φ (v − λe) for all v ∈
ker (e∗) and all λ ∈ R. Simply observe that

supψ (B) = 1 = φ (γe+ z) = ψ (z − γe) .

As a consequence, z − γe ∈ bd (B).
(5) span(((e∗)−1(1)∩B)−e) is a proper dense subspace of ker (e∗). Indeed,

it will be enough to show that ((e∗)−1(1)∩B)−e =M or, equivalently,

that (e∗)
−1

(1) ∩ B = M + e. On the one hand, we trivially have that

M + e ⊆ (e∗)
−1

(1) ∩ B. On the other hand, let z + e ∈ (e∗)
−1

(1) ∩ B
with z ∈ ker (e∗). There exist sequences (tn)n∈N

, (sn)n∈N
, (rn)n∈N

⊂
[0, 1], (mn)n∈N

, (m′
n)n∈N

⊂ M , and (bn)n∈N
⊂ Bker(e∗) such that tn +

sn + rn = 1 for all n ∈ N and (tnbn + sn (mn + e) + rn (m
′
n − e))n∈N

converges to z + e. Because of the product topology, we can deduce
(by passing to subsequences if necessary) that (sn)n∈N

converges to 1
and that (tn)n∈N

and (rn)n∈N
both converge to 0. Therefore, (mn)n∈N

converges to z. Since M is complete, we have that z ∈M .
�

Remark 2.9. Observe that given a real Banach space X with an isometric
reflection vector e ∈ SX and isometric reflection functional e∗ ∈ SX∗ , the set

(
(e∗)−1 (1) ∩ BX

)
− e

is a bounded, complete barrel of its linear span. Indeed, by [6, Theorem 2.2]
the above set is absolutely convex, thus it must be absorbing in its linear span.
As a consequence, by considering again Theorem 2.2, we have that Theorem
2.8 is in fact a characterization of real Banach spaces admitting an infinite
dimensional, separable quotient.

To finish this section, we present the following question (which is actually an
equivalent reformulation of the separable quotient problem in virtue of Theorem
2.8 and Remark 2.9).
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Question 2.10. Let X be a real Banach space. Can X be equivalently
renormed to have an isometric reflection vector e ∈ SX such that

span
((

(e∗)−1 (1) ∩ BX

)
− e
)

is a proper dense subspace of ker (e∗)?

In [6] we presented the following two results that could be considered as an
approach to a positive answer to Question 2.10.

Theorem 2.11 (Garćıa-Pacheco, [6]). Let X be a real Banach space. Let

e ∈ SX be an isometric reflection vector. Then

(1) span(((e∗)−1(1) ∩ BX) − e) ⊆ ker (e∗). Conversely, if m ∈ ker (e∗) is

so that λ 6= 0 can be found verifying that ‖e+ λm‖ = 1, then m ∈
span(((e∗)−1(1) ∩ BX)− e).

(2) span(((e∗)−1(1) ∩ BX)− e) = ker (e∗) if and only if (e∗)−1 (1) ∩ BX is

a smooth face of BX .

Theorem 2.12 (Garćıa-Pacheco, [6]). Let X be an infinite dimensional, real

Banach space. Then X can be equivalently renormed to have an isometric

reflection vector e ∈ SX such that span(((e∗)−1(1) ∩ BX) − e) is a closed,

maximal subspace of ker (e∗).

3. L1-summand vectors in dual spaces

A particular case of isometric reflection vectors are the so called L1-summand
vectors (see [4]).

Definition 3.1 (Behrends, [4]). Let X be a real Banach space. We say that
a vector x ∈ SX is an Lp-summand vector of X (1 ≤ p ≤ ∞) if there exists a
closed maximal subspace M of X such that X = Rx⊕pM .

Combining results from [1] and [6] we have the following theorem, that
expresses the differences between L1-summand vectors and isometric reflection
vectors in 2-dimensions and in higher dimensions as well.

Theorem 3.2 (Aizpuru and Garćıa-Pacheco, [1]). Let L be an uncountably

infinite discrete topological space. Denote by L̂ the one-point compactification

of L and by 1 ∈ C(L̂) the constant function on L̂ equal to 1. Then

(1) If Y is a 2-dimensional subspace of C(L̂) containing 1, then 1 is an

L1-summand vector of Y , and thus it is an isometric reflection vector

of Y and a strongly exposed point of BY .

(2) 1 is not an exposed point of BC(L̂).

(3) 1 is not an isometric reflection vector of C(L̂).

The aim of this section is actually at dealing with L1-summand vectors in
dual spaces. Taking a look at either [4] or [8] one can quickly realize that if
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1 < p ≤ ∞, then an Lp-summand vector of a dual space must be a norm-
attaining functional which attains its norm at an Lq-summand vector of the
predual space, where q is the conjugate exponent of p. More generally, if
1 < p ≤ ∞, then an L

p-summand subspace of a dual Banach space must be
ω∗ closed and thus it is the dual of an Lq-summand subspace of the predual
space (in [8] L1-summand subspaces are called L-summands and L∞-summand
subspaces are called M-summands). Precisely in [8, Example IV.1.8] it is shown
the existence of a Banach space without non-trivial M-ideals such that X∗ has
a non-trivial L-summand. This example is based on the Theory of Banach
Algebras. Here we will show an easy way to find L1-summand vectors in dual
spaces that are not norm-attaining functionals at L∞-summand vectors without
using techniques of the ring theory or polynomial algebra. We will rely on the
following result (see [9]).

Theorem 3.3 (Jameson, [9]). Let X be a non-reflexive real Banach space. Let

x∗∗ ∈ X∗∗ \X. Then
{
x∗ ∈ BX∗ : ‖x∗‖+

|x∗∗ (x∗)|

dist (x∗∗, X)
≤ 1

}

⊆ clω∗

(
Bker(x∗∗)

)

⊆ {x∗ ∈ BX∗ : |x∗∗ (x∗)| ≤ 2dist (x∗∗, X)} .

In addition

(1) If X = c0, then
{
x∗ ∈ BX∗ : ‖x∗‖+

|x∗∗ (x∗)|

dist (x∗∗, X)
≤ 1

}
= clω∗

(
Bker(x∗∗)

)

for all x∗∗ ∈ X∗∗ \X.

(2) If X = ℓ1, then

clω∗

(
Bker(x∗∗)

)
= {x∗ ∈ BX∗ : |x∗∗ (x∗)| ≤ 2dist (x∗∗, X)}

for all x∗∗ ∈ X∗∗ \X.

Based upon the previous theorem we find the following definition.

Definition 3.4. Let X be a non-reflexive real Banach space. Then

(1) We say that X is of c0 dual type if
{
x∗ ∈ BX∗ : ‖x∗‖+

|x∗∗ (x∗)|

dist (x∗∗, X)
≤ 1

}
= clω∗

(
Bker(x∗∗)

)

for all x∗∗ ∈ X∗∗ \X .
(2) We say that X is of ℓ1 dual type if

clω∗

(
Bker(x∗∗)

)
= {x∗ ∈ BX∗ : |x∗∗ (x∗)| ≤ 2dist (x∗∗, X)}

for all x∗∗ ∈ X∗∗ \X .
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Utilizing plain techniques of the linear algebra and convex geometry we will
show the existence of L1-summand vectors in dual spaces that are not norm-
attaining functionals at L∞-summand vectors in their predual.

Remark 3.5. Let X be a real Banach space.

• If (xi)i∈I is a net in BX and f ∈ SX∗ is a norm-attaining functional
such that (|f (xi)|)i∈I is convergent to a number 0 ≤ k < 1, then we
can find another net (zi)i∈I ⊆ BX such that (|f (zi)|)i∈I is convergent
to k, |f (zi)| ≥ k for all i ∈ I, and (xi − zi)i∈I converges to 0. Indeed,
we may assume that k > f (xi) > 0 for all i ∈ I and then it is sufficient
to take

zi :=
k − f (xi)

1− f (xi)
z +

1− k

1− f (xi)
xi,

for all i ∈ I, where z is any element in SX such that f (z) = 1.
• One could easily realize that the situation above still holds if f is not
norm-attaining, but it would obviously require a much more elaborate
proof.

• However, the situation above does not remain true if we ask k = 1.
Indeed, assume that X is a real rotund Banach space whose unit sphere
contains a point z that is not strongly exposed on the unit ball. There
are then f ∈ SX∗ and a sequence (xn)n∈N

⊂ SX such that f (z) = 1,
(f (xn))n∈N

converges to 1, but (xn)n∈N
does not converge to z. If

(zn)n∈N
⊂ BX is another sequence such that |f (zn)| ≥ 1 for all n ∈ N,

then for all n ∈ N we have that either zn = z or zn = −z, and hence
(xn − zn)n∈N

cannot converge to 0.

Remark 3.6. Let X be a non-reflexive real Banach space. The Bishop-Phelps
Theorem allows us to deduce that the set of norm-attaining functionals on X∗

is dense in X∗∗. Therefore, many x∗ ∈ SX∗ and x∗∗ ∈ SX∗∗ can be found such
that x∗∗ (x∗) = 1 and 0 < dist (x∗∗, X) ≤ 1

2 .

Theorem 3.7. Let X be a non-reflexive real Banach space of c0 dual type. Let

x∗ ∈ SX∗ and x∗∗ ∈ SX∗∗ such that x∗∗ (x∗) = 1 and 0 < dist (x∗∗, X) ≤ 1
2 .

The equivalent norm on X∗ given for all y∗ ∈ X∗ by

‖y∗‖1 := |x∗∗ (y∗)|+ ‖y∗ − x∗∗ (y∗)x∗‖

is a dual norm.

Proof. Let (y∗i )i∈I be a net in X∗ such that ‖y∗i ‖1 ≤ 1 and assume that (y∗i )i∈I
is ω∗ convergent to some y∗ ∈ X∗. We may assume that (|x∗∗ (y∗i )|)i∈I is
convergent to some number 0 ≤ k ≤ 1. Observe also that if k = 1, then
y∗ = x∗ and thus ‖y∗‖1 = 1. So, assume that k < 1. Notice that in virtue
of the previous remark we may assume that |x∗∗ (y∗i )| ≥ k for all i ∈ I. Since
‖y∗i − x∗∗ (y∗i )x

∗‖ ≤ 1− |x∗∗ (y∗i )| ≤ 1− k for all i ∈ I, we deduce that
(
y∗i − x∗∗ (y∗i )x

∗

1− k

)

i∈I

⊆ Bker(x∗∗)
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is a net ω∗ convergent to
y∗ − kx∗

1− k
.

By hypothesis, ∥∥∥∥
y∗ − kx∗

1− k

∥∥∥∥+ 2
|x∗∗ (y∗)− k|

1− k
≤ 1.

In other words,

‖y∗‖1 = |x∗∗ (y∗)|+ ‖y∗ − x∗∗ (y∗)x∗‖

≤ ‖y∗ − kx∗‖+ 2 |x∗∗ (y∗)− k|+ k

≤ 1. �

Corollary 3.8. Let X be a non-reflexive real Banach space of c0 dual type.

Then X can be equivalently renormed so that its dual has an L1-summand vector

that is not a norm-attaining functional at an L
∞-summand vector in X.

To finish the manuscript we will show that the hypothesis of c0 dual type in
the previous result is necessary.

Remark 3.9. Let X be a real Banach space. Consider a 6= b ∈ X \ {0} and
assume that ‖a‖ > ‖b‖. The triangular inequality tells us that ‖a‖ − ‖b‖ ≤
‖a− b‖. Take a look at the following:

a

‖a‖
=

‖b‖

‖a‖

b

‖b‖
+

‖a‖ − ‖b‖

‖a‖

a− b

‖a‖ − ‖b‖
.

If ‖a‖ − ‖b‖ = ‖a− b‖, then we deduce that

a

‖a‖
∈

[
b

‖b‖
,
a− b

‖a− b‖

]
⊂ SX .

Theorem 3.10. Let X be a non-reflexive real Banach space of ℓ1 dual type. Let
x∗ ∈ SX∗ and x∗∗ ∈ SX∗∗ \X such that x∗∗ (x∗) = 1. Consider the equivalent

norm on X∗ given by

‖y∗‖1 := |x∗∗ (y∗)|+ ‖y∗ − x∗∗ (y∗)x∗‖

for all y∗ ∈ X∗. If x∗ is a rotund point of BX∗ , i.e. x∗ does not belong to any

non-trivial segment of SX∗ , then ‖·‖1 is not a dual norm on X∗.

Proof. Take y∗ ∈ SX∗ such that

0 < x∗∗ (y∗) < min {1, 2dist (x∗∗, X)} .

By hypothesis, y∗ ∈ clω∗

(
Bker(x∗∗)

)
. However, according to the previous re-

mark and by assumption, we have:

‖y∗‖1 = |x∗∗ (y∗)|+ ‖y∗ − x∗∗ (y∗) x∗‖

> |x∗∗ (y∗)|+ ‖y∗‖ − ‖x∗∗ (y∗) x∗‖

= 1.

Therefore, ‖·‖1 is not a dual norm on X∗. �
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