• Title/Summary/Keyword: Random Models

Search Result 1,402, Processing Time 0.025 seconds

The Classification of random graph models using graph centralities

  • Cho, Tae-Soo;Han, Chi-Geun;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.61-69
    • /
    • 2019
  • In this paper, a classification method of random graph models is proposed and it is based on centralities of the random graphs. Similarity between two random graphs is measured for the classification of random graph models. The similarity between two random graph models $G^{R_1}$ and $G^{R_2}$ is defined by the distance of $G^{R_1}$ and $G^{R_2}$, where $G^{R_2}$ is a set of random graph $G^{R_2}=\{G_1^{R_2},...,G_p^{R_2}\}$ that have the same number of nodes and edges as random graph $G^{R_1}$. The distance($G^{R_1},G^{R_2}$) is obtained by comparing centralities of $G^{R_1}$ and $G^{R_2}$. Through the computational experiments, we show that it is possible to compare random graph models regardless of the number of vertices or edges of the random graphs. Also, it is possible to identify and classify the properties of the random graph models by measuring and comparing similarities between random graph models.

Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models

  • Kim, Jiyeong;Sohn, Insuk;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.81-96
    • /
    • 2017
  • Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.

Random Effects Models for Multivariate Survival Data: Hierarchical-Likelihood Approach

  • Ha Il Do;Lee Youngjo;Song Jae-Kee
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Modelling the dependence via random effects in censored multivariate survival data has recently received considerable attention in the biomedical literature. The random effects models model not only the conditional survival times but also the conditional hazard rate. Systematic likelihood inference for the models with random effects is possible using Lee and Nelder's (1996) hierarchical-likelihood (h-likelihood). The purpose of this presentation is to introduce Ha et al.'s (2000a,b) inferential methods for the random effects models via the h-likelihood, which provide a conceptually simple, numerically efficient and reliable inferential procedures.

  • PDF

On prediction of random effects in log-normal frailty models

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.203-209
    • /
    • 2009
  • Frailty models are useful for the analysis of correlated and/or heterogeneous survival data. However, the inferences of fixed parameters, rather than random effects, have been mainly studied. The prediction (or estimation) of random effects is also practically useful to investigate the heterogeneity of the hospital or patient effects. In this paper we propose how to extend the prediction method for random effects in HGLMs (hierarchical generalized linear models) to log-normal semiparametric frailty models with nonparametric baseline hazard. The proposed method is demonstrated by a simulation study.

  • PDF

Review of Gauge R&R Studies by Restricted and Unrestricted Design in the Two-Factor Mixed Model (2인자 혼합모형의 제약과 비제약 설계에 의한 게이지 R&R 연구의 고찰)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.657-665
    • /
    • 2009
  • The paper reviews gauge R&R studies by two-factor mixed models including random and fixed factors. The two-factor mixed models include restricted models and unrestricted models considering the interaction of two factors. This study also classifies the models according to the number of factors, and the combination of various factors such as random factor, fixed factor, block factor and repetition type.

  • PDF

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

Bayesian baseline-category logit random effects models for longitudinal nominal data

  • Kim, Jiyeong;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.201-210
    • /
    • 2020
  • Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project.

Separation-hybrid models for simulating nonstationary stochastic turbulent wind fields

  • Long Yan;Zhangjun Liu;Xinxin Ruan;Bohang Xu
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • In order to effectively simulate nonstationary stochastic turbulent wind fields, four separation hybrid (SEP-H) models are proposed in the present study. Based on the assumption that the lateral turbulence component at one single-point is uncorrelated with the longitudinal and vertical turbulence components, the fluctuating wind is separated into 2nV-1D and nV1D nonstationary stochastic vector processes. The first process can be expressed as double proper orthogonal decomposition (DPOD) or proper orthogonal decomposition and spectral representation method (POD-SRM), and the second process can be expressed as POD or SRM. On this basis, four SEP-H models of nonstationary stochastic turbulent wind fields are developed. In addition, the orthogonal random variables in the SEP-H models are presented as random orthogonal functions of elementary random variables. Meanwhile, the number theoretical method (NTM) is conveniently adopted to select representative points set of the elementary random variables. The POD-FFT (Fast Fourier transform) technique is introduced in frequency to give full play to the computational efficiency of the SEP-H models. Finally, taking a long-span bridge as the engineering background, the SEP-H models are compared with the dimension-reduction DPOD (DR-DPOD) model to verify the effectiveness and superiority of the proposed models.

EFFICIENT ESTIMATION IN SEMIPARAMETRIC RANDOM EFFECT PANEL DATA MODELS WITH AR(p) ERRORS

  • Lee, Young-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.4
    • /
    • pp.523-542
    • /
    • 2007
  • In this paper we consider semiparametric random effect panel models that contain AR(p) disturbances. We derive the efficient score function and the information bound for estimating the slope parameters. We make minimal assumptions on the distribution of the random errors, effects, and the regressors, and provide semiparametric efficient estimates of the slope parameters. The present paper extends the previous work of Park et al.(2003) where AR(1) errors were considered.

Review of Mixed-Effect Models (혼합효과모형의 리뷰)

  • Lee, Youngjo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.123-136
    • /
    • 2015
  • Science has developed with great achievements after Galileo's discovery of the law depicting a relationship between observable variables. However, many natural phenomena have been better explained by models including unobservable random effects. A mixed effect model was the first statistical model that included unobservable random effects. The importance of the mixed effect models is growing along with the advancement of computational technologies to infer complicated phenomena; subsequently mixed effect models have extended to various statistical models such as hierarchical generalized linear models. Hierarchical likelihood has been suggested to estimate unobservable random effects. Our special issue about mixed effect models shows how they can be used in statistical problems as well as discusses important needs for future developments. Frequentist and Bayesian approaches are also investigated.