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Abstract

Modelling the dependence via random effects in censored multivariate sur-
vival data has recently received considerable attention in the biomedical lit-
erature. The random effects models model not only the conditional survival
times but also the conditional hazard rate. Systematic likelihood inference
for the models with random effects is possible using Lee and Nelder’s (1996)
hierarchical-likelihood (h-likelihood). The purpose of this presentation is to in-
troduce Ha et al.’s (2000a,b) inferential methods for the random effects models
via the h-~likelihood, which provide a conceptually simple, numerically efficient
and reliable inferential procedures.
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1. Introduction

Multivariate survival data are frequently encountered in biomedical research,
and include multiple events experienced by an individual, matched pairs, or family
members sharing the same genetic background; see, for example, data on kidney
infection (McGilchrist and Aisbett, 1991), skin allografts (Andersen et al., 1997)
and litter-matched tumorigenesis (Klein et al., 1999). Recently, a number of authors
have proposed using the models with random effect, a common unobservable effect
within the same individual, to account for the dependence between the survival
times. In particular, they have widely used the random effects models such as
mixed linear models (MLMs) and frailty models, an extension of linear models and
Cox’s (1972) proportional hazards models, respectively. For the former the random
effect is modelled by acting linearly on each individual’s survival time, whereas for
the latter it (often, called by frailty) by acting multiplicatively on the individual’s
hazard rate.

Inferences for MLMs have been studied by many authors. Pettitt (1986) and
Hughes (1999) proposed maximum-likelihood estimation procedures using respec-
tively the EM algorithm and a Monte Carlo EM algorithm based on Gibbs sam-
pling, both of which are computationally intensive. Klein et al. (1999) derived
the Newton-Raphson method, but it is very complicated to obtain the marginal
likelihood. :
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Inferences for frailty models also have been studied by many authors. For the
lognormal frailty model, McGilchrist and Aisbett (1991) and McGilchrist (1993)
developed an estimation procedure using Cox’s (1972, 1975) partial likelihood, but
their method does not handle ties between survival times. For the mathematically
convenient gamma frailty model, Klein (1992) and Nielsen et al. (1992) devel-
oped EM estimation procedures, which provide the same estimators; Nielsen et al.
(1992) presented a counting process framework and Parner (1998) showed the con-
sistency and asymptotic normality of Nielsen et al.’s estimator. However, with the
EM method in general, the conditional expectation of frailty given the observed data
would be computed via a numerical integration (except for the gamma frailty model,
where an analytic solution exists) and also the variance estimates for the estimated
parameters are not directly available; see for example Louis (1982) and Jamshidian
and Jennrich (1997). For the gamma frailty model, Clayton (1991) and Aslanidou
et al. (1998) developed Markov chain Monte Carlo procedures, which may be com-
putationally intensive. For other frailty models see Hougaard (1987) and Costigan
and Klein (1993).

Lee and Nelder (1996) proposed the use of h-likelihood for inferences from models
with random effects, and they (2000) showed by numerical study that their procedure
yields efficient parameter estimators in all the cases they studied. We (2000a,b)
developed a new inferential method for the MLMs and frailty models via the h-
likelihood, which provides a conceptually simple, numerically efficient and reliable
inferential procedure. For the MLMs we (2000a) showed by simulation studies that
our procedure is robust to violation of the normal assumption if the censoring rate is
not too high. We (2000b) also showed that our procedure provides a simple unified
framework for the frailty models with various frailty distributions including the
lognormal and gamma. For the gamma frailty model, given the frailty parameter,
our procedure is the same as that of Klein (1992) and Nielsen et al. (1992), and
for the lognormal frailty model it becomes an extension of McGilchrist’s (1993)
restricted maximum likelihood (REML) method for data including ties. In Section
2 we introduce data structure and assumptions for both models. In Sections 3 and 4
we present a new estimation procedure for the Normal MLM and the frailty models,
respectively.

2. Data Structure and Assumption

Let T3; i =1,...,q, j=1,...,ni, n=7);n;) be the survival time for the jth
observation of the sth individual and C;; be the corresponding censoring time. The
observable random variables are Y;; = min(T};, C;;) and d6;; = I(T;; < Cyj), where
I(-) is the indicator function. Denote by U; the unobserved random effect on the ith
individual.

We make the following two assumptions: see also Nielsen et al. (1992).

Assumption 1. Given U; = u;, {(T35,Cij),7 = 1,...,n;} are conditionally indepen-
dent and both T;; and C;; are also conditionally independent for j =1,...,n;.
Assumption 2. Given U; = u;, {Cy5,7 = 1,...,n;} are noninformative about u;.

3. Estimation of Mixed Linear Models
For T;; we assume the Normal MLM as follows: fori = 1,...,qgand j = 1,...,n;,

Tij = z;8 + Ui + e,
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where z;; = (241, . .. , Tijp)t 18 a vector of fixed covariates, f is a p x 1 vector of fixed
effects and U; ~ N(0,02) and €;; ~ N(0, 0%) are independent. Here, the dispersion or
variance components o2 and o2 stand for variability within and between individuals,
respectively. The Tj; could be expressed on some suitably transformed scale, e.g.,
log(T;;). With the log-transformation, the Normal MLM becomes an accelerated
failure-time model with random effects.

We shall first present a simple method for estimating the parameters in the
Normal MLM. Because T;;’s may be subject to censoring, only Y;;’s are observed,

but
E(Y;5|Us = ug) # pijs

where p;; = B(Ty;|U; = u;) = at ;8 + u;. Now, we consider an extended form of the
pseudo-response variable ¥} of Buckley and James (1979) for the linear model with
censored data as follows:

Y5 = Yibi; + E(T;5|Ti; > Yij, Ui = wi) (1 = &55). (3.1)
Then from the conditional independence of T;; and Cy; in Assumption 1, we have
E(Y;IU;i = w) = pij - (3.2)

The proof of the expectation identity (3.2) is given in Appendix 1 of Ha et al.
(2000a). Let y;; and y;; be the observed values for Yi; and Y3, respectively. It can
be easily shown that if T;;|(U; = u;) ~ N(uij, 02), then (3.1) becomes

Y5 = Yii0i + {paj + 0V (mij) {1 — 635), (3.3)

where V(-) = ¢(-)/®(:) is the hazard function for N(0,1), ¢ and ®(= 1 — ®) are the
density and cumulative distribution functions for N(0,1), respectively, and m;; =
(Yi5 = i) [oc.

Under Assumptions 1 and 2 and following Ha et al. (2000b), the h-likelihood for
the Normal MLM, denoted by h, is defined by

h=h(B,02,02) = luj + D La, (3.4)
i :

where £1;; = €358, 02; yij, 6ijlui) = — 6i{log(2mo?)+(my;)?}/2+(1— 8ij) log{®(mij) }
is the logarithm of the conditional den31ty functlon for Y;; and 4;; given U; = uy,
and fg; = fo;(02;u;) = — {log(2m02) + (u?/02)}/2 is the logarithm of the density
function for U;.

Given the dispersion components 6 = (0?,02), the maximum h-likelihood esti-

mators (MHLEs) of 7 = (8, u) with u = (u1,... ,uq)* are obtained by solving
aﬁk - EZ{ g+ (1= 8)V i) boge =0 (= 1,....p), (39
oh 1 1 )
Bu; = ;Z Z{dijmij +(1- (51']‘)V(mij)} — ;2-11,1 =0(t=1,...,9). (3.6)
7 u
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Plugging (3.3) into the two MHL equations (3.5) and (3.6) reduces them, respec-
tively, to

1 . :
oz sz(yz‘j - /‘iJ')“"ijk =0(k=1,...,p), (3.7)
1 x 1 .
0—22 Yij — Hij | — ~U—2ui=0(z=1,...,q). (3.8)
€ ] u

Because we cannot observe all the yj;’s, we replace them by their estimates
Y5 = Yii0ij + {Hij + G V(M) H1 — 645),

where m;; = (yi; — [i;j)/Ge and [is;; = xfjﬁ + @;. When there is no censoring the
equations (3.7) and (3.8) become Henderson’s (1975) mixed-model equations using

the data y;;. These two estimating equations are also extensions to those of Wolynetz
(1979), Schmee and Hahn (1979) and Aitkin (1981) for normal linear models with

no random effects. From (3.7) and (3.8), given 6 and y*, the MHLEs # = (8, 4)
are obtained by solving iteratively Henderson’s (1975) mixed-model equations with
pseudo-response variables y*

XtXx Xtz B Xty*
t t ~ = 1. % ] (39)
Z'X Z'7 + ¢l U Z'y
where X is the n x p matrix whose ijth row vector is xﬁj, Z is the n x ¢ group indicator
matrix whose ijkth element z;;x is Opsj/Oug, I, is the g x ¢ identity matrix, y* is the
n X 1 vector with the ijth element y;; and ¢ = a? /o2, The asymptotic covariance
matrix (Lee and Nelder, 1996) for 7 — 7 is given by H*~! with

. 0%h 1
H = — 55 = J—?H, (3.10)
where
H= XWX Xtwz
- ZWX Z'WZ+ ¢l |

Here, W = diag(w;;) is the n x n diagonal matrix with the ijth element w;; =
(5ij + (1 — Jij)f(mij) and §(mU) = V(mij){V(mij) — m”} SO, the upper left-hand
corner of H*™! in (3.10) gives the variance matrix of f;

var(B) = o?(Xte1X)" 1, (3.11)
where ¥ = W~! + ¢~ 1ZZ!. Note that both y* in (3.9) and W in (3.10) depend on
censoring patterns and that W is the weight matrix which takes into account the
loss of information due to censoring; if the ijth observation is uncensored w;; = 1.

For the estimation of the dispersion parameters € given the estimates of 7, we
use Lee and Nelder’s (1996) adjusted profile h-likelihood, defined by

hp = halr=+ ,
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where hy = h + Llog{det(2rH*"')}. The maximum adjusted profile h-likelihood
estimators (MAPHLESs) for 6 are obtained by solving iteratively

Oha
06
where 7 is re-evaluated at each iteration. Though not reported here, we found
via simulation studies that Lee and Nelder’s (2000) first- and second-order REML

methods show no improvement over their 1996 MAPHLEs for the Normal MLM.
We (2000a) thus use the original MAPHLESs for 02 and o2, given by

T=7 = 0 ) (3-12)

= R
o2 = Zij(y;j — i) and o2 = ————Zi N (3.13)
C m—(+g—m) Yog-1’

where ny, y1 and v, are given in Appendix 2 of Ha et al. (2000a). McGilchrist
(1993) showed by simulation that the REML method gives a good standard-error
estimator of 8 for log-normal frailty model. When there is no censoring, W = I,
so that the MAPHLEs become the REML estimators of Patterson and Thompson

(1971). By simulation we (2000a) showed that the estimator of var(3) in (3.11)
using the MAPHLE:s is reasonably good.

4. Estimation of Frailty Models

Given U; = u; the conditional hazard function of T;; is of the form
Atijlui) = Ao(ti;) exp(z;B)us, (4.1)

where A\g(-) is an unspecified baseline hazard function. The frailties U; are assumed
to be i.i.d. random variables with a density function having frailty parameter «; the
gamma and lognormal frailty models assume gamma and lognormal distributions
for Uj;, respectively.

Under Assumptions 1 and 2 and following Ha et al. (2000b), the h-likelihood for
the frailty models, denoted by h, is defined by

h=h(B,Ao,a) =Y b+ ) _ Lo, (4.2)
7 :

where £15; = £155(B, Mo; Yijr 6ijlui) = dij{log Mo(vis) + miz} — {Ao(yis) exp(ni;)} is
the logarithm of the conditional density function for Y;; and 4;; given U; = wu;,
€; = fi(o;v;) is the logarithm of the density function for V; = log(U;), Ao(-) is
the baseline cumulative hazard function, and 7721' = n;; + v; with n; = a:ﬁjﬂ and
v; = log(u;).

Let Ag(t) be a step function with jumps at the observed death times. That
is, Ao(t) = Ek:y(k)<t Mo(Y(k)), where y() is the kth smallest distinct death time

among the y;;’s. Let v = (v1,...,vg)". Then, by arguments similar to those in
Johansen (1983), given 7 = (B, v) the score equations dh/dMo(y(x)) = O provide the
nonparametric MHLE of Ag(t):

“ d
Ao(9) = Z { (k)exp(m"j)}’ , )

k:y(k)st Z ijER(y(k))
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where R(y()) = {4j : i > yx)} is the risk set at time y(z) and d(x) is the number
of deaths at y(). Thus the MHLE for 7 = (8, v) can be obtained by maximising the
profile h-likelihood h* after eliminating Ag(t):

W =h, (4.4)

Let n;; = ac,],B+vl be n}; = ﬂ—}-z]'u where z;; = (zij1, - - -, zijq)* is the ¢ x 1 group
indicator vector whose rth element is On;;/0vr. The kernel of h* in (4.4) becomes

Z[Si(k)ﬂ + sé(k)v = dk) log{ Z exp 7711 }] + ZEQ, Q;v;), (4.5)

k 1§ER(yxy)

t
where 57,y = quD(k) zt. and 82(k) = Z”ED(k) zu are the sums of the vectors :1;”

and zfj over the set D(k) of individuals who die at y(x), respectively. Note that
the estimator (4.3) and the profile h-likelihood h* defined by (4.5) are respectively
extensions of Breslow’s (1974) estimator of the baseline cumulative hazard function
and Breslow’s (1974) partial likelihood for the Cox model to the frailty models, and
also that the h* is an extension of the partial likelihood of McGilchrist and Aisbett
(1991) and McGilchrist (1993) for the lognormal frailty model.

Remark 4.1. Marginal likelihood, denoted by m, has been often used for infer-
ence; see for example Nielsen et al. (1992). Under Assumptions 1 and 2, m can be
obtained by integrating out the frailty random variables from the h-likelihood:

m(B, Ag, @) Zlog{/exp dvl}, (4.6)

where h; = Y. €1;; + £o; is the contribution of the ith individual to A in (4.2). We
7 J

(2000b) showed that, in the gamma frailty model, the MHLE for 3 given « is the
same as the maximum marginal likelihood estimator (MMLE), which is obtained by
maximising the profile marginal likelihood after eliminating Ag(¢).

We use the Newton-Raphson method to solve the score equations dh* /01 = 0.
That is, given o the MHLE of 7 is obtained by solving iteratively

Bl+1) ) B ( B ) Lo ( oh* /8 ) a7

( 3+ 50 L R

where J = — §%h* /872 is the (p + q) X (p + q) observed information matrix whose
inverse is the asymptotic covariance matrix of B and U—v; see Lee and Nelder (1996).
Even though a number of authors have suggested ways to obtain valid standard
error estimates from the EM algorithm and also to accelerate its convergence, our
procedures are faster and provide a direct estimate of var(,@) from the observed
information matrix required for the Newton-Raphson method. For the gamma
frailty model we can show that, given ¢, the standard error estimate of B calculated
from the derivatives of h* agrees algebraically with that of Andersen et al. (1997),

which have showed how to obtain valid standard error estimates using the marginal
likelihood. For the Cox model without the frailty the score equations (4.7) become
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those of Breslow (1974), and for the lognormal frailty model without ties they become
those of McGilchrist and Aisbett (1991) and McGilchrist (1993). Next, for the
estimation of the frailty parameter a given estimates of 7, we use Lee & Nelder’s
(1996) adjusted profile h-likelihood h}, defined by

p= h*Alﬂ_—.B,vij )

where hY = h* + %log{det(2rJ1)}. The MAPHLE for a is obtained by solving
iteratively
Ohy/0alg_p ,—s =0,

where B and © are re-evaluated in each iteration. In the lognormal frailty model
where the V,’s are normal with mean 0 and variance a, it can be easily shown that

O /00lys s = (4 =) — Y02/,

where v = tr(K)/a and K is the matrix given by the bottom right-hand corner of
J~1; this yields McGilchrist’s (1993) REML estimator for «. Furthermore, for the
gamma frailty model with E(U;) = 1 and var(U;) = o the MAPHLE provides an
extended REML.
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