On prediction of random effects in log-normal frailty models

  • Ha, Il-Do (Department of Asset Management, Daegu Haany University) ;
  • Cho, Geon-Ho (Department of Asset Management, Daegu Haany University)
  • Published : 2009.01.31

Abstract

Frailty models are useful for the analysis of correlated and/or heterogeneous survival data. However, the inferences of fixed parameters, rather than random effects, have been mainly studied. The prediction (or estimation) of random effects is also practically useful to investigate the heterogeneity of the hospital or patient effects. In this paper we propose how to extend the prediction method for random effects in HGLMs (hierarchical generalized linear models) to log-normal semiparametric frailty models with nonparametric baseline hazard. The proposed method is demonstrated by a simulation study.

Keywords

References

  1. Ainsworth, L. M. and Dean, C. B. (2006). Approximate inference for disease mapping. Computational Statistics and Data Analysis, 50, 2552-2570. https://doi.org/10.1016/j.csda.2005.05.001
  2. Breslow, N. E. (1972). Discussion of Professor Cox’s paper. Journal of the Royal Statistical Society B, 34,216-7.
  3. Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society B, 34, 187-220.
  4. Duchateau, L. and Janssen, P. (2008). The frailty model, New York: Springer-Verlag.
  5. Ha, I. D. (2008a). On estimation of random effect in Poisson HGLMs. Journal of Korean Data & Information Science Society, 19, 375-383.
  6. Ha, I. D. (2008b). Frailty survival models with a non-PH function. Journal of Korean Data & Information Science Society, 19, 343-351.
  7. Ha, I. D. and Lee, Y. (2003). Estimating frailty models via Poisson hierarchical generalized linear models. Journal of Computational Graphical Statistics, 12, 663-681. https://doi.org/10.1198/1061860032256
  8. Ha, I. D. and Lee, Y. (2005). Comparison of hierarchical likelihood versus orthodox best linear unbiased predictor approaches for frailty models. Biometrika, 92, 717-723. https://doi.org/10.1093/biomet/92.3.717
  9. Ha, I. D., Lee, Y. and MacKenzie, G. (2007) Model selection for multi-component frailty models. Statistics in Medicine, 26, 4790-4807. https://doi.org/10.1002/sim.2879
  10. Ha, I. D., Lee, Y. and Song, J. K. (2001). Hierarchical likelihood approach for frailty models. Biometrika, 88, 233-243. https://doi.org/10.1093/biomet/88.1.233
  11. Ha, I. D. and MacKenzie, G. (2009). Robust frailty modelling using non-proportional hazards models. Statistical Modelling, in press.
  12. Hougaard, P. (2000). Analysis of multivariate survival data, New York: Springer-Verlag.
  13. Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society B, 58, 619-678.
  14. Lee, Y and Nelder, J. A. (2001). Hierarchical generalised linear models: a synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika, 88, 987-1006. https://doi.org/10.1093/biomet/88.4.987
  15. Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalised linear models with random effects: unified analysis via h-likelihood, London: Chapman and Hall.
  16. McGilchrist, C. A. (1993). REML estimation for survival models with frailty. Biometrics, 49, 221-225. https://doi.org/10.2307/2532615
  17. Ripatti, S. and Palmgren, J. (2000). Estimation of multivariate frailty models using penalized partial likelihood. Biometrics, 56, 1016-1022. https://doi.org/10.1111/j.0006-341X.2000.01016.x
  18. Vaida, F. and Xu, R. (2000). Proportional hazards model with random effects. Statistics in Medicine, 19, 3309-3324. https://doi.org/10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9