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EFFICIENT ESTIMATION IN SEMIPARAMETRIC
RANDOM EFFECT PANEL DATA MODELS WITH AR(p)
ERRORS'

Younc Kyune LEE!

ABSTRACT
In this paper we consider semiparametric random effect panel models
that contain AR(p) disturbances. We derive the efficient score function
and the information bound for estimating the slope parameters. We make
minimal assumptions on the distribution of the random errors, effects, and
the regressors, and provide semiparametric efficient estimates of the slope
parameters. The present paper extends the previous work of Park et al.

(2003) where AR(1) errors were considered.
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1. INTRODUCTION

In this paper we assume that one observes (X, Y:) such that
Yi=X|B8+o+ey, i=1,... ,N;t=1,...,T, (1.1)

where X;; are d-variate covariates, 3 is a d-dimensional unknown parameter and
a; are unobservable random effects. For the errors ez we assume an AR(p) model

it = P1€54-1 + P25 0—2 + - + PpEit—p + Uit

where u;; are i.i.d. random variables from N (0, 0?). Writing X; = (X zT1 yoe o X lTT)T,
we also assume that (X;, «;) are i.i.d. (dT+1)-dimensional random variables hav-
ing unknown density ¢. For stationarity of the error process {sit}%F:l, we assume

throughout the paper that the roots of the characteristic equation
1—¢1B—¢B*—-..— $,BP =0
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lie outside the unit ball. We consider two models. The first one is the model
where X;, o; and ¢; = (e41,. .. ,5Z~T)T are independent. The second model is the
one where X; and o; are allowed to be dependent while (X;, o;) is independent
of E;.

The main contribution of the paper is to derive the semiparametric informa-
tion bound for estimating § in the presence of the infinite dimensional nuisance
parameter g as well as the finite dimensional nuisance parameters ¢ and 2. Also,
a semiparametric efficient estimator of 3 is provided that achieves the informa-
tion bound. We make minimal assumptions on the distributions of the random
effects and the covariates.

The general theory of semiparametric efficient estimation has been well de-
veloped, see Bickel (1982), Begun et al. (1983) and Bickel et al. (1993), among
others. Semiparametric efficient estimation for the model (1.1) has been discussed
extensively in the literature. For example, Park and Simar (1994) considered the
case where the errors are assumed to be i.i.d. N(0,02). Park et al. (1998) ex-
tended their results to the case where some of the covariates are dependent of the
random effects. Park et al. (2003) worked on the model (1.1) where the errors
follow an AR(1) process. The present paper extends the previous work of Park
et al. (2003) by relaxing the AR(1) error assumption to AR(p). This extension
turns out to be not straightforward and calculation of the information bound as
well as construction of an efficient estimator appear to be much more involved
than in the AR(1) case.

The panel model (1.1) with AR(p) errors has numerous applications. One
example is productivity analysis of financial industries where market shocks may
not be adjusted to immediately and induce a serial correlation pattern in firm’s
use of best-practice financial technologies. In this case our semiparametric effi-
cient estimators provide an important tool for making robust inferences on the
productivity gains due to the economic reforms.

There have been a great deal of effort to address the question of efficient es-
timation for other panel data models. These include the earlier work of Arellano
and Bond (1991), Arellano and Bover (1995) and Ahn and Schmidt (1995) on
dynamic panel models. They investigated a number of moment conditions which
if correctly specified the generalized method of moment technique yields efficient
estimates. A number of excellent surveys and monographs have been written
on this subject, see Baltagi (1995) and Métyds and Sevestre (1992) for exam-
ple. Recently, Park et al. (2007) studied semiparametric efficiency for dynamic
panel data models. For extensive discussion on other panel models and their
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applications, see Hsiao (2007) and the references therein.

2. INFORMATION BOUNDS

2.1. Model 1

In this model we assume that X;, o; and ¢; are independent. We consider
semiparametric efficient estimation of 3 from the sample {(X;,Y;) |4 =1,...,N}
in the presence of the nuisance parameters (02, ¢, h(-), g(*)).

Let Y = (Y1,...,Y7)T, X = (X],...,X;)" for the generic of observation
(X;,Y;) and (o, ¢) for the generic of (a;,€;). Thus, in these notations, (X;,Y})
are generics for (X, Yit), i = 1,..., N. Let h(-) denote the univariate density of
the o and g(-) the dT-variate density of X. Define Cis(¢) = Cov(et,es)/0? for
1 <t,s < pand let ¢**(¢) denotes the (¢,s)!* component of the inverse of the
p X p matrix C(¢) = (Cts(¢)). We note that Cis(¢) and c?*(4) are functions of ¢
only. Let ¢(B) be a transfer function defined by ¢(B) =1 — ¢1B — -+ — ¢, BP
where B is the backward shift operator. Then, the probability density function
of (X,Y) can be written as

p(z,y; B,0%, 6, h, g)
¥4

= (VEro) i) g(e) [ exp[ 202{chts<¢>(yt—mm—u>

t=1 s=1

T
(s —elB-u)+ Y (#(B)w—=/ ﬁ—U))2}Jh(u)dw (2.1)

t=p+1

Define T(¢) = Y5 3P _ ct*(¢) + (T — p){p(B)1}?, where ¢(B)1 =
¢1— - — ¢p, and

W (¢, 8) = T(¢)" 1{22@( $)(Y: — X; B) + {6(B)1} Z $(B)(Y: — X, ﬂ)]

t=1 s=1 t=p+1

We note that W (4, 8) is a weighted average of ¥; — X,/ 3. In fact, W(¢,8) =
Eftl‘:l wy(Y; — X{ B), where w; = wy(¢) is defined by
Zs)zl Cts(¢) - {¢(B)1} E€=p—t+1 ¢37 if 1 <t< D,
T(¢)w, = { {$(B)1}, ifp+1<t<T—p,
BB (-2 ), T -p+1<t<T.
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In general, for any sequence {a:}, we have

p p T T
DD P (Pac+{d(B)1} > ¢(Bas = T($) Y  wiay. (22)
t=1

t=1 s=1 t=p+1

The identity will be also used later. It can be seen that 23;1 wy = 1. Also, it
can be verified that

p P T
Y Y@~ X B0 - XTB-u)+ Y {sB)¥ - XT6-w)}
t=1 s=1 t=p+1
- YO - X -XI8)+ Y (om0 - X7}
t=1 s=1 t=p+1
+T(¢) {u—W(#,8)}* — T(®)W(4,5)". (2:3)

Define v2 = v?(¢) = 0?T(¢)~! and f = f( - ;9% h) by
fw) = [ gl - uh(w du

where ¢, denotes the density function of N(0,v?). Plugging the expression at
(2.3) into the right hand side of (2.1), we get

p(X,Y;8,0% ¢,h,9)

= (V2r0)~T|C(¢)|"?g(z) exp [ {Z > @)Y - X, B)(Ys - X[ B)

by {oB)(¥: -~ x75)} H exp{ (,5)" }muf(ww, 8)).

t=p+1

It is worthwhile to note that f is the density function of W (¢, §). This follows
from

p T
W(4,8) = a+T(¢)™" lzz (@)e + {B(B)L} > ut} , (249

t=p+1

and the fact that the variance of the terms in the bracket on the right hand side
of (2.4) equals

PP T
Var (Z ths(¢)5t) + {#(B)1}*Var ( Z ut)

t=p+1

P P P
= {th8(¢)} {Z s ’(¢)} Cuw(¢) + (T —p){¢(B)1}2]

s'=1
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P P
= 0% D) *(¢) + (T — p){p(B)1}
t=1 s=1
= T(¢)o. (2.5)
The second equality in the above equations holds since
P 1ol 1, ift= Sl,
> Cuw(9) (9) = (C(¢)C($) M = { , (2.6)
by 0,if t £

We now calculate the score functions for the parameters 3, 0% and ¢. Let
L denote the log-likelihood of (8,02, ¢, h,g) for the generic observation (X,Y).

Define
oL oL oL

bo=22, fo=——ry By =—"

PT88 " T 902 4T Bg;
To give mathematical expressions for these score functions, write X (9) = Zle
'U)tXt and

Zy(¢,8) =Y; — X[ B~ W(¢,8).

Define
_ E ts _i 1 ts
500 = 50 (G1elCl) . 60) =~ (30))
o P P
5i(9) = ~ 55 T(6) = 2) > ¢ (¢) +2(T - p){g(B)1}
t=1 s=1
Let wy; = Wy j(¢) for a given j be another set of weights defined by
2 2187:1 fjs(‘b) _Zi):p—t—f-l ¢s, f1<t<p-j
23 () - 1 ds H (B}, ifp—j+ 1<t <p,
Sj(@)ws; = { 2{6(B)1}, ifp+1<t<T-p,
102 6+ {6(B)1}, #T-p+1<t<T—j
(11— g, T —j+1<t<T

It can be also verified that Zthl Wy ; = 1forall j =1,...,p. Finally, define

T

Wi(6,8) = > i (Ye — X/ B). (2.7)

t=1
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Then, we obtain

- {Z S OX L0 + S BILG, ﬁ)}{¢(B)Xt}]

t=1 s=1 t=p+1

—X(¢)~—(W(¢, B)), (2.8)

p
ZZJS )Z:(¢, B) Zs(, B) + Z{cﬁ Zt‘bﬂ)}}

t=1 s=1 t=p+1

_ T (4, ﬁ) —u
507 T 202 f( W(¢ B)) /{ }
xpu(W($, B) — u)h(u) du, (2.9)

ly; = — [Z D e @)Y - X[ B)(Y. — X B)

02 =

204

t=1 s=1

+ Z {¢(B)(Yt - XtTﬂ)} (Yemj = X ;8)

t=p+1

* 2a2ff€‘(f2, 5) J e~ 2i0.0)}

xy(W (¢, B) — u)h(u) du. (2.10)
The equation (2.8) follows from the fact that

+ k5(8)

'a%w (¢,8) = Z'tht ~X(¢)-

Derivation of (2.9) is based on the identity

p

SN ()Y - X[ B) (Y, — X B)

t=1 s=1

T
+ Y {sBv X7} - TW(s,87
t=p+1
= 3" " (9)2:(6, ) Zs (4, 8) + Z {$(B)Zi(¢, B}
t=1 s=1 t=p+1

The result (2. 10) can be obtained by using

W(6,5) — S<¢

a% 5 W68 - Wi(6,0)},
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5 |5 | = @ n {8 -2 W69}
2 , .
5 | D 2|~ B w60 up {W(8,0) - 21730, + ).

Methods of finding efficient score functions and information bounds for esti-
mating parametric components in semiparametric models are well explained in
Bickel et al. (1993). We adopt their approach here.

Let S be the tangent space for the nuisance parameters o2, @, h,g. Then,
S =81 + Sy + 83+ Sy, where S| = [fqg],SQ = [KUQ] and writing W = W((ﬁ,ﬁ),

83 = {a(W) : a € Ly(P), Ea(W) = 0},
34 = {b(X) b e LQ(P),Eb(X) = 0} .
Here and below, [¢] means the closed linear span of £. Then, the efficient score ¢£*

is given by
0 =lg —TI(L5]S) = (4s|Si- N S5 NS5 NSt),

where II( - |S) is the projection operator onto the space S. Let Q; = II(-|S:).
By the Halperin’s theorem (see, Bickel et al., 1993, p. 443, Theorem 3), it follows
that

(R1Q2Q3Q4) g — £

in Lo-sense as r — 0o. The information bound for estimating 3 is given by

In the following theorem we give explicit formulas for the efficient score func-
tion £* and the information bound I. For this, let J(f) denote the Fisher infor-
mation for the location of f, i.e.,

J(f) = /f’(w)z/f(w) duw.

Also, define
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We assume that J(f) < oo, and that ¥; and X2 exist and are non-singular. We
need these conditions for the regularity of the semiparametric model.

THEOREM 2.1. Assume that J(f) < 0o, and that £1(¢) and E2(¢) exist and
are non-singular. Then, the efficient score function for estimating 3 in Model 1
is given by
1 [2 T
= DN " (0) 26, 8) X+ > {6(B)Zi(o, B)HS(B)X:}

t=1 s=1 t=p+1

- f7'(W(¢,ﬂ>>{X(¢) _ EX(9)}.

Also, the information bound is given by I = 0=231(¢) + J(f)Za2(9).

&=
o

PROOF. We suppress ¢ and 3 in the arguments of W, Z;, c*°, X, etc. First,
we show that £ is perpendicular to Sy in Ly(P)-sense, i.e.,

H(£ﬁ|84) =E(£|X) =0 or Qafg={g. (2.11)
Note that
Zy = ey - T(¢)" [Z Y e, + {8(B)1) Z us:| . (2.12)
s=1s'=1 s=p+1

Thus, Z;(¢, 8) is independent of X. Also, from (2.4) one can see that W (¢, 8) is
independent of X. These entail

E(Z)X) = E(Z) =0,

E{fTI(W)lX} — E{ffl(W)} = 0.

The orthogonality (2.11) follows from (2.8).
Next, we claim that

W is independent of {Z;}7;. (2.13)

To show this, we go back to the expression (2.4). Let 02 and ¢ be fixed so that
v? is fixed. For the time being, we treat a as a parameter rather than a random
variable. Consider the family of distributions of W indexed by «. In fact, W has a
N(a,v?) distribution. It is a complete and sufficient statistic for a. Furthermore,
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from (2.12) the distribution of {Z;} does not depend on «, thus it is ancillary for

a. This establishes (2.13).
The independence (2.13) implies E(Z;|W) = E(Z;) = 0. Since E(X|W) =
EX', we obtain
!
(s1S5) = (B0

().

Thus, from (2.11) it follows that
Q3Qalg = f,@ - H(fﬁfss)

= chtsztx + Z {#(B)Z:H$(B) X:}

t=1 s=1 t=p+1
f/

W {X - EX}.

Since {Z;} 4 {—2;}, all third-order moments of Z;’s are zero. With the indepen-
dence of X, W and {Z,}, this entails

E{(Q3Qulp)ls2} =0 or Q2Q3Q4ls = Q3Qals.
We prove
Q3Q4¢3 is perpendicular to £y, forall 1<j5<p. (2.14)

This implies Q1Q2Q3Q4f3 = Q3Qus€s. Thus, the assertion (2.14) concludes the
proof of the first part of the theorem. To show (2.14) we use a representation of
{4, that is different from the one given at (2.10). Note that for any sequence {a;}

p p T
QZZ§§SGt+ Z ¢(B)a: + {¢(B)1} Z as—; = S; Zwt]at (2.15)
t=1 s=1 t=p+1 t=p+1

Using (2.15) and the fact Zle Wy j 24 = Wj — W, one can verify

P p
S Y- X B - X8+ Y {6 - X7 8)} (¥i-s - X ;8)
t=1 s=1 t=p+1
P P T 1 _
=3 ) 22+ Y {d(B)Ze}Ze_j + FSiW(2W; —W).

t=1 s=1 t=p+1
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Plugging this into (2.10), we get

[szatsztz + Z {¢(B)Zt}Zt—J:| +n,(¢)+ SW(2W W)

t=1 s=1 t=p+1

+ u2 — 2uW;(¢, ﬂ)} 0o (W (9, B) — w)h(u) du.

J
202f(W(¢, ) /

By similar arguments for proving (2.13), one can show that (W, WJ) is indepen-
dent of {Z;}]_,. Using again the fact {Z;} L {—Z:} and the independence of
X, (W, W;) and {Z:}, one can conclude (2.14).

Next, we prove the second part of the theorem. By the independence between
{Z:},{X:} and W, we get

P T
E T = J(f)Var(X) + —E[Z S X+ Y {¢(B)Zt}{¢(B)Xt}]
t=1 s=1 t=p+1
.

P p T
X {Z D PZX.+ Y {#(B)Zi}H{b(B)X:}

t=1 s=1 t=p+1

Define
P p
E=E@) =T DD e+ {4(B)1} Z ut | .
t=1 s=1 t=p+1
From (2.4) we can write Z; = ¢; — €. Recall that
Var(8) = T(¢) 'o?
see (2.5). Also, we find that for 1 < ¢ < p,

E(€t16 -1 2ZthsCtt,= ) -1,2

t=1 s=1
Thus, we obtain

E(Z,Zy) = o*{Cw — T(¢)"1}, 1<t,t <p. (2.16)

Since ¢(B)Z; = us — {¢(B)1}¢ and E(éuy) = T(¢) 1o?{¢p(B)1} for p+1 <
t' < T, it follows that

EZ{$(B)Zy} = — “2){¢(B)1}, 1<t<p;p+1<¢<T, (217)

T(¢
E{¢(B)Z}H{$(B)Zy} = E(uguy) — 5%@(3)1}2, p+1<tt <T. (2.18)
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From (2.16)—(2.18) and (2.6) we get

L)
= PS P e p D p p T
= o) ) P EXX]) ( ¢>) (Z thsxs) <Z thsxs) , (2.19)

t=] s=1
14 T

E(Z ez (X ez emx)

t=1 s=1 t=p+1

T <2;5 (; ;Ctsx ) <{¢(B)1} _z:;Ll{qﬁ(B)XtT }>, (2.20)
T

E( Y {s(B)ZHe(B )(ZZc“Zth>T

t=p+1 t=1 s=1
2

(T }jTj mx)) (L) (2:21)

t=p+1 t=1 s=1

T

E(Z{¢( )Z:Ho(B )(Z{¢ )Z:}{é(B })T

t=p+1 t=p+1

T
= E 3 (BN HABIXT - {¢<B>1}2E( S (5)x,)

t=p+1 (¢) t=p+1
T
x( > #(B)X] ) (2.22)
t=p+1

Putting (2.19)(2.22) together and using (2.2), we obtain

P P T
E z;zctsZtXmL > {¢(B)Zt}{¢(B)Xt}j}
t=1 s=1 t=p+1

-

r p T
X { Y 24X+ Y {$(B)ZeH{o(B)X:}

=1 s=1 t=p+1

p P T
302{ thsE(Xng_)+ Z E{¢(B)Xt}{¢(B)Xt}T _02T(¢)E(XXT)

=1 s=1 t=p+1

This concludes the proof of the theorem. O
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2.2. Model 2

In this model we allow o; and X; to be dependent, but continue to assume
that (a;, X;) is independent of &;. Let g denote the (dT' + 1)-variate density
function of (¢, X;). Define

n(w,x) = / olw — w)g(u, ) du.

The function 7 is the joint density function of (W(¢,3),X). Then, the log-
likelihood of (8,02, ¢, q) for the generic observation (X,Y’) equals

L(ﬁ’a27¢’ h’g;X7Y)

p P
= -7 log(2no?) - 3 log |C(9)] - 2%2{2 2B - X B)(Ys — X[ B)

t=1 s=1

T
+ Y fsmm-xTp) } +HOB | L rog(ams?)

202
t=p+1
+ log f(W(¢, B8), X).

The following theorem gives the efficient score function and the information
bound for estimating 8 in Model 2.

THEOREM 2.2. Assume that X1(¢) exists and is non-singular. Then, the
efficient score function for estimating B in Model 2 is given by

P P T
P lz S H D260 X+ Y {6(B) 26, HHO(B)X:}|.

t=1 s=1 t=p+1

Also, the information bound is given by I = 072%(¢).

PrOOF. The theorem follows by the same arguments used in the proof of
Theorem 2.1 with the fact that (W (¢, 8), X) is independent of {Z;}. In this case,
the score functions are as given by (2.8)—(2.10), but with h(u) and f(W (¢, 5))
being replaced by g(u, X) and n(W (¢, 8), X), respectively. Also, n'(W (¢, 3), X)
is substituted for f'(W(¢,B)), where n'(w,z) = (8/6w)n(w,z). The tangent
space for the nuisance parameters o2, ¢, q is given by S = S; + Sz + Sz, where
S1 = [€y], S2 = [£,2] and S3 = {a(W, X) : a € Ly(P), Ea(W, X) = 0}. Thus, one
can verify that

D P T
b~ TI(LplSs) = = |3 N D Z(6.0)X, + Y (8B 26, HHB(B)XS |,

t=1 s=1 t=p+1
and that this is perpendicular to £,2 and £y, for all 1 < j < p. U
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3. EFFICIENT ESTIMATION

3.1. Model 1

To construct an efficient estimator of 3, we need preliminary estimators of 3
and ¢ that are v/ N-consistent. Let 8 be the OLS estimator obtained by regressing
Y —?7; on X —71', where Yl = T—I(Xﬂ +--- +XiT) and ?1 = T_l(l/il +---+
Yir). Then,

ey T
B = liz Z th - 7@ zt - Y )T:l LZ Z(th - j(-z)(ytzt - Yz):l
i=1 t=1 i=1 t=1
N T 17N T .
= Z Z( it~ (th — )T Z(Xit - Xi)(eit — g,;):l .
=1 t=1 | i=1 t=1

It is easy to see that 8 is v/ N-consistent.

Next, we describe a v/ N-consistent estimator of ¢. Let p; = Corr(es, &¢—;)
and define for 1 < j < p,
Pj — Pj+1
1—p1
Then, since the autocorrelation function satisfies the difference equation

r; =

pj = ¢1pj—1 + G2pj—2+ -+ dppj—p, I =1,

it follows that

Tj =Tji—1¢1+ -+ r1gj-1+ ¢+ (—1)dj41

H(=r1)iez + -+ (=Tpjo1)dps l<ijsp
Thus, writing r = (71, . .. »Tp)T and
1 =1 —ry oo+ —Tpyg —Tp-3 —Tp-2
r1 1 -1 ... ~Tp—5 —Tp—4 —Tp-3
r9 T 1 ‘e —Tp_6 —Tp_5 _'rp—-4
R= ’
Tp—3 Tp—d Tp—5 - 1 -1 —T1

Tp—1 Tp—2 Tp—3 "+ T2 T 1 }
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we have
r=R¢ or ¢ =R Ir.

Let 7; be estimators of r; and R be the corresponding estimator of R. We
propose as the preliminary estimator of ¢

¢ = R7F.

It is clear that if 7; are v/ N-consistent, then qg is also a v/ N-consistent estimator
of ¢. To define 7}, let

1 T
W) = gy 2 e = XiDWiaes = X0

Then, we have E{v;;(8)|a;} = a? + p;Var(es), so that
E{7i;(8) = ¥i,j+1(B)lei} = (pj — pj+1)Var(ee), (3.1)
E{vi0(8) — vi1(B)les} = (1 — p1)Var(er),
for all . This shows that 7; defined by
P Yo {7(B) = i1 (B)}
J b -~ ~
¥ {vo(B) — v (B)}
is a v/N-consistent estimator of Tj.
Once an estimator of ¢ is obtained, one can construct an estimator of p =

(p1,---,pp) " from the Yule-Walker equations for AR(p) process. Let 5 be the
solution of the following system of linear equations with respect to p:

pj = lepj—l + (52Pj—2 + o+ J’ppj—p’ 1<j5<p.
From (3.1) and the identity
Var(e;) = 0*(1 — p1¢1 — - -~ — ppp) ",
we have
o®=(1-p) (1 - pr1 — - — ppdp) E{io(B) — 7 (B)}-
This suggests the following estimator of o2 which is also v/ N-consistent:

N
P =Q0-p) "1 prdr— — )N {10(B) — vir (B)}-

=1
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Now, we define an estimator of the information matrix I. Let X’(q;) =
NN X,(@). Define
) 1 Y (2P . . &~
Si=g 2 {Z > (@) (Xt ~ Xi() (X — Xi(9))'
i=1 \t=1 s=

1

T
+ D {S(B) (Xt — Xi( @) H(B) (Xst — i(q?))}T},

t=p+1

N
£2 = 3 LG - XOHLG) - X @),
i=1

. 1L /2 .
J(f) = = = (0, 8)).
=53 (%) v
We estimate f by a kernel estimator:

ZKb(w Wi(,5)) + ¢,

where Kj(u) = (1/b)K(u/b) and K is a probability density function such that
KW /K | are bounded for § = 1,2,3. An example of K satisfying this condition
is given by K(u) = e7%(1 + e™*)"2. The bandwidth b and the constant c tends
to zero at some appropriate rates described below. We define

= 57280 4+ J(F)Ss.

The efficient estimator of § is now defined by

N p p
B=ft 1Y 570 Y (@) Zu(d B X
i=1 t=1 s=1
T 2 3
1572 3" {3(B)Zu(d,5)}{I(B) it}—{xi@)—)?(qs)}’;( (@8]
t=p+1

The following theorem tells that 3 is a semiparametric efficient estimator of (3.

THEOREM 3.1. Assume the conditions given in Theorem 2.1. Furthermore,
assume that E(elX1l) < oo for some t > 0 and that [w?h(u)du < oco. If
b—0,c— 0 and Nb?s® — o0 as N — oo, then

NY2(B - g) -5 N(0,I7Y).
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PrOOF. We only give a sketch of the proof. In the proof we write W;, Z;, X;
and X. for Wi(é, 8), Zit(¢,8), X. (¢) and X.(¢), respectively, when ¢ and J are
the true parameters. Define

fn(w;t?) = Ky /<pT(w — u)h(u)du +c.

Note that fy(w;v?) = K * f(w) + c. Also define

! 2
IN(f): = /{%(w;qﬁ)} f(w) dw,
In: = 0728 + IN(f)Z2.

From the standard theory of kernel density estimation it follows that as N — oo
f’ f/ 2
E {—M(Wl;vZ) - —(Wl)] -0, (3.2)
In f

See, for example, Bickel and Ritov (1987), Park (1990), or Park and Simar (1994)
for the proofs of these results. From (3.2) one can show

Iy — 1, (3.3)
N 4
(% - BN I ws0) 220, (3.4
N /
NN K- B(R) [jﬁ”(m, y-Low| 20 69)
Now, define
Qn (¢, 0)
=N— 1/22 U—2i2p:cts Q)Zn 0 C
=1 t=1 s=1
N ! o?
ot 3 B0, OB - (K0) - X.(o)}ﬁ—g (w09 7:5)
t=p+1

Then, by the central limit theorem and (3.3)—(3.5) we have

IN'Qn(8,4) & N(0,I7Y).
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Note that if we replace 2 by o2 and f by fn(-;62/T(¢)) in the definition of
B, then

B=pB+NT2I7'QN (B, 9).
Thus, if we define
N /
(6.0 = NS0 - 2 0} | £ 050.0) - 2 (0,017
then the proof of the theorem is reduced to the proofs of
I—-Iy %o, (3.6)
Rn(0,4) 0, (3.7)
Qu(B,¢) — Qn(B,¢) — (5 - ﬁ)TwQN(ﬂ 9)

~(6-9)"5 ¢QN(ﬁ )| (3:8)
NG (8,9) + In 20, (39
NIQ SQn(8,9) 0. (3.10)

The proofs of (3.6)—(3.10) can be done similarly as in Park et al. (2003). For
instance, to prove (3 10) one may use E(W;|W) =W and

5 (¢) 7

B | - (Rild) - X(@}] -0,
j
where W is defined at (2.7).

3.2. Model 2

We claim that a GLS within estimator of § is semiparametric efficient. To
define the GLS within estimator, let

, Xis — Xi(9), if 1<¢<p,
W= { $(B)(Xie — Xi(9)), if p+ 1<t <T.
Let Y(¢) = 3°2_, w,(#)Y; and define
v :{Yit—ﬁ«b), if1<t<p,
* $(B) (Y ~ ¥i(9)), if p+ 1<t <T.
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Then the GLS within estimator of § is defined by

-1
N p p
BaLs = {Z{ZZC“W X($)X5H(9)T + Z t(¢)Xﬁ($)T}}

=1 t=1 t=p+1

p
[ (ST EOX@OG+ Y Xl Y,’;(qs)}]
i=1

t=1 s=1 t=p+1

Using (2.2) one may verify

PO AC) +{¢B)1}2 X5() =0.

Mv

t=1 s=1 t=p+1
This entails
BaLs
-1
1 akS ts T X* Nk INT
=8+ | % AL L @OXUDXLE)T + S XX
i=1 t=1 s=1 t=p+1

3

N P
I: Z{ZZC&?(¢) t(¢)€zs+ Z X:;: {qS(B)azt}] . (311)

i=1 t=1 s=1 t=p+1

Define Bgrs to be the right hand side of (3.11) with é being replaced by the true
@, i.e.,

-1
N P
BoLs = B+ []l\, Z{Z > (#) X5 (9) T Z X2(6) X ¢)T}]
1

i=1 t=1s=1 t=p+1

N p p T
X [—N Z{Z ths(¢)X$g(¢)€is+ Z Xﬁ(‘/’)uit} .

i=1 t=1 s=1 t=p+1
Note that
P p
Var [ >3 " (¢) X} (4)eis + Z X4 (d)ui |X1,..., X
t=1 s= Cot=p4l

p p

1
= 3D ) (410w ()} X X (@)

t=1 ¢'=1 s=1 s'=1
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+ Y XE@Xh(e)T

t=p+1
p P p
= | Y HGXUNX BT+ Y XEOX5D)T|.
t=1t=1 t=p+1

Thus, the conditional variance of Bgrs equals £1(4) o2, so that
d _
VN(BgLs — B) 5 N(0,0*S7(9))-

From the consistency of ¢ it can be verified that v'N(Bers — Bgrs) — 0
in probability. Thus, we have the following theorem, which implies in view of
Theorem 2.2 that Bgrg is semiparametric efficient for Model 2.

THEOREM 3.2. Under the conditions of Theorem 2.2, we have
VN(BoLs — B) 5 N(0,0°S7(9)).
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