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Abstract

Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random
effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The
covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be
homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy
these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random
effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving
average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision
matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal
ordinal data. The methods are illustrated by a lung cancer data set.

Keywords: generalized linear mixed models, modified Cholesky decomposition, heterogeneity,
positive definiteness, autoregressive, moving-average

1. Introduction

Longitudinal data are measured from each subject repeatedly over time (Diggle et al., 2002). There-
fore, outcomes from the same subject are correlated and the correlation is taken into account for
the proper estimation of the coefficients of covariates. In the analysis of the longitudinal categorical
data, we typically use generalized linear mixed models (GLMMs) (Breslow and Clayton, 1993). The
maximum likelihood estimators of the model parameters in the GLMMs are inconsistent when the
random effects distribution is misspecified (Litiere et al., 2007, 2008). However the random effects
distribution provides random intercepts and slopes for random variation of subjects without the serial
correlation of repeated outcomes such as the autoregressive (AR) structure. In this paper, we consider
multivariate normal distribution for the serial dependence of repeated outcomes.

In the multivariate normal distribution for the random effects, random effects covariance matrix
explains both subject-specific and time variations. Even though the covariance matrix is heterogenous,
one usually assumes the simple structure of the covariance matrix such as a homogeneous AR(1)
covariance matrix to satisfy its positive definiteness. However, it is a strong assumption and the
estimated values of the fixed effects in GLMMs under the assumption of homogeneous covariance
matrix can be biased (Heagerty and Kurland, 2001).

Recently the (random effects) covariance matrix is assumed to be heterogeneous depending on
the covariates and to be a high-dimensional structure. To satisfy these assumptions, two Cholesky
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decompositions of the matrix were proposed: modified Cholesky decomposition (MCD) and moving
average Cholesky decomposition (MACD). MCD decomposes the inverse of covariance matrix (pre-
cision matrix) for linear models into generalized autoregressive parameters (GARPs) and innovation
variances (IVs) (Pourahmadi, 1999, 2000). The GARPs are dependence parameters that explain the
serially dependence from the previous outcomes and the GARPs can be set on the AR structure of the
covariance matrix. The I'Vs are variance parameters and positive IVs guarantee the positive definite-
ness of the covariance matrix. Bayesian modeling using MCD were proposed in linear mixed models
(Daniels and Pourahmadi, 2002; Daniels and Zhao, 2003). Pan and MacKenzie (2003, 2006) used
the decomposition to deal with unbalanced longitudinal data and to address joint mean-covariance
estimation for linear mixed models. Lee ef al. (2012) used MCD for the random effects precision
matrix in the GLMMs and Lee (2013) proposed Bayesian modeling for the random effects precision
matrix of the GLMM to accommodate longitudinal binary data using MCD.

In MACD the covariance matrix for linear models is decomposed into generalized moving average
parameters (GMAPs) and IVs instead of the precision matrix (Zhang and Leng, 2012). Similar to
MCD, the positive IVs guarantee the positive definiteness of the covariance matrix. Lee and Yoo
(2014) proposed a Bayesian random effects logistic regression model using MACD for the random
effects covariance matrix to analyze longitudinal binary data. Recently, Kim and Lee (2015) surveyed
several approaches for modeling of the random effects covariance matrix including MCD and MACD.

This paper analyzes longitudinal ordinal data. We will now briefly describe several models for
longitudinal ordinal data. McCullagh (1980) proposed the cumulative logit model for independent
ordinal data. Liu and Agresti (2005) presented a general overview of models for (clustered) ordinal
categorical data. Most models for correlated ordinal data used random effects to explain the cor-
relation of responses. Gibbons and Hedeker (1997) proposed both the probit and logistic models
with random-effects for longitudinal ordinal data. Lee and Daniels (2008) proposed likelihood-based
marginalized models for longitudinal ordinal data and the marginalized models were extended to ac-
commodate bivariate longitudinal ordinal data (Lee et al., 2013). Recently, Nooraee et al. (2014)
reviewed the generalized estimating equation (GEE) method with several software packages (R, SAS,
SPSS) for longitudinal ordinal data to provide a population-averaged effects of covariates.

In this paper, we propose cumulative logit models with heterogeneous random effects covariance
matrix to analyze longitudinal ordinal data. To model the random effects precision matrix and the ran-
dom effects covariance matrix in the cumulative logit model, we respectively use MCD and MACD.
We also use Bayesian methodology for the estimation of parameters. This paper is organized as fol-
lows. In Section 2, we present our motivating dataset. In Section 3, we present Bayesian cumulative
logit random effects model for longitudinal ordinal data and we propose models for the random ef-
fects precision/covariance matrix. In Section 4, we examine the bias of estimates on parameters to
the misspecification of the precision/covariance matrix. In Section 5, we analyze real data from a
longitudinal study on lung cancer. Finally, we provide conclusions in Section 6.

2. Lung cancer study

A longitudinal study on lung cancer was designed to compare the response rate (RR) (the percentage
of patients whose cancer shrinks or disappears after treatment) (Kim et al., 2012). The study was
designed as a prospective randomized non-comparative parallel longitudinal study in a single institute.
A total of 96 (48 per arm) patients with lung cancer were randomly assigned to two arms (gefitinib
and erlotinib). The main goal of the study was to evaluate the RR for each arm. The RRs were
47.9% (95% ClI, 33.8%—62.0%) in gefitinib and 39.6% (95% CI, 25.7%—-53.4%) in erlotinib. Median
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Figure 1: Marginal proportions for category 3 (I frequently lost my appetite) and 4 (I usually lost my appetite)
given previous response under two arms (gefitinib and erlotinib). Time = 1 (baseline week), 2 (4 weeks), ..., 25
(92 weeks).

progression-free survival (PFS) was 4.9 months (95% CI, 1.3-8.5) in gefitinib and 3.1 months (95%
CI, 0.0-6.4) in erlotinib. However, there was no significant difference of the RR in the two arms. In
this paper, it was of interest to see if there was a negative impact of treatments on patients quality of life
(QOL). It is common that health-related QOL was evaluated with the use of a cancer-specific, 30-item
score questionnaire developed by the European Organization for Research and Treatment of Cancer
(EORTC). We compare the QOL data on the two treatments. The patients’ QOLs were measured
at baseline, on day 1 of each subsequent 28-day cycle (4 weeks) and at the end of the study (week
0,4,8,...,92). We concentrate on loss of appetite (Appetite) one of the QOL measures. Lee and
Yoo (2014) also analyzed appetite outcomes, which were dichotomized. In this paper, we considered
original scale (ordinal scale). Appetite was measured on a 4 point ordinal scale, 1: I always did not
lose my appetite; 2: I sometimes lost my appetite; 3: I frequently lost my appetite; 4: I usually lost
my appetite. Figure 1 presents respectively marginal proportions for category 3 (I frequently lost my
appetite) and 4 (I usually lost my appetite) for two arms. The marginal proportions of appetite loss
decreased as visit number increased and the two arms had similar pattern.

Most of patients dropped out of the study during the follow-up period. Missing data mechanism
can be classified as missing completely at random (MCAR), missing at random (MAR), or missing
not at random (MNAR) (Daniels and Hogan, 2008). In this paper, the estimation of model parameters
is based on Bayesian approach and we assume that the missing data are MAR in our analysis.

3. Bayesian cumulative logit random effects model for longitudinal ordinal data

We first present a cumulative logit random effects model for longitudinal ordinal data. Then we

propose models for the random effects precision/covariance matrix in the cumulative logit model using
MCD and MACD.
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3.1. Cumulative logit random effects model
We first present the cumulative logit random effects model for longitudinal ordinal data. Let Y}, be the
K-category ordinal response for subjecti (i = 1,...,N)attime ¢ (t = 1,...,n;; n; < T) and let x;, be
the corresponding vector of covariates. We assume that each Y;; is conditionally independent given
random effects b;; and the responses for different subjects are independent, and the regression model
is given by

P (Yy < klbi, xir)

T
= : by, 3.1
o8 P Yy > klbi, xir) Poi + x5 + b S

where By, for k = 1,..., K —1 are intercepts that satisfy the monotonicity property (strictly increasing
in k), x;; is a p X 1 vector of covariates, 8 is a p X 1 vector of regression coefficient. We assume

bi = (bits- . b)) ~N(0,%), (3.2)

where b; is a vector of random effects values for subject i and %; is the random effects covariance
matrix which is decomposed into generalized time series parameters (GTSPs) and the IVs using MCD
or MACD.

Decompositions provide parameters that can easily be modeled, have a sensible interpretation,
and allow for simple computation (Daniels and Zhao, 2003; Lee et al., 2012). The GTSPs consist
of two types of parameters, GARP for the AR structure of X; and GMAP for the MA structure of Z;,
respectively. In addition these parameters can easily be modeled without the concern of the covariance
matrix being positive definite.

3.2. Modeling of random effects precision matrix

In multivariate normal distribution, modeling of the precision matrix is easier than that of the covari-
ance matrix. We now describe MCD for the random effects precision matrix. We assume that for
t=2,...,n,

bi = (bit, ..., bin)" ~ N(0,Z)),
bil = €1, (3-3)

-1
by = Z dijbij + ey, 3.4
=1

where e;, nder (O, O'I.zt) with Var(e;) = diag(o-l.z] s O-izn,-) = D;. Then we reexpress (3.3) and (3.4) in
matrix form as

Tib; = e, (3.5)

_ T, _ T
where b; = (bi1,bp, ..., bin)" , e; = (ei1,€n,...,ep,) and

1 0 0 - 0
—¢i21 1 o -0
T,=| —%31 —¢in2 1 0

_¢in,~l _¢in;2 _¢in,'3 e ]
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Then the covariance matrix is given by
T.X.T] = Var(e;) = D;. (3.6)

The GARPs and the I'Vs are represented by ¢;;; and o2, respectively.

i’

Proposition 1. X; in (3.6) is positive definite when IVs are positive.

Proof: Since 7; is invertible, ¥; = ;7' D;T; . Now let x be an arbitrary nonzero vector. Then x” Z;x =
xT7'DT " x. For z = T, Tx, x"%x = 2 D;z. Since T; is invertible and o2 > O fort = 1,...,n;, %; is
positive definite. g

Equation (3.6) is reexpressed as follows
> =T1I'D'T, (3.7

We note from (3.7) that the random effects precision matrix is directly decomposed into the GARPs
and the IVs. They can be modeled using time and/or subject-specific covariate vectors w;,; and h; by
setting

$uj=why.  logos =hia, (3.8)

where vy is a ax1 vector of unknown dependence parameters and A is a bx1 vector of unknown variance
parameters (Daniels and Zhao, 2003; Lee, 2013; Lee et al., 2012; Pourahmadi, 2000; Pourahmadi and
Daniels, 2002). The GARPs/IVs parameters are modeled as functions of subject-specific covariates by
design vectors w;,; and h;,. For example, w), i = (Li—ji=1)» Li-ji=1) x gender;) corresponds to an AR(1)
structure depending on the covariate, gender, where 1, is the indicator function. A remarkable feature
of (3.8) is its flexibility in reducing the potentially high-dimensional and constrained parameters of the
precision matrix Zi‘l to a + b unconstrained parameters y and A (Pourahmadi, 1999). As Proposition

1 presents, %; is positive definite when IVs are positive.

3.3. Modeling of random effects covariance matrix

MCD in Subsection 3.2 is used to model the random effects precision matrix. However, the covariance
matrix, rather than the precision matrix, is typically of interest. Now we present the modeling of the
random effects covariance matrix in the cumulative random effects model. We again assume that
b,‘ = (b,‘], ey b,‘ni)T ~ N(O, Zi) and

bi1 = e, (3.9
1
b = Zl[,je[j+ei,, fort=2,...,n; (3.10)
j=1
where ¢; indep N(0, D;) for e; = (e;1,¢€i,. .., e,-,,,.)T. By setting L; = T[.‘1 we restate (3.9) and (3.10) in
matrix form as

bi = Lie;,



86 Jiyeong Kim, Insuk Sohn, Keunbaik Lee

where
1 0 o --- 0
In1 1 o --- 0
L=t lxm 1 -0
lin,l lin,-2 lin;3 e 1

Here l;;; is called the GMAPs. The random effects covariance matrix Z; is
Y = LiD;L!. (3.11)

We note that the random effects covariance matrix is decomposed into the GMAPs and the IVs.
Rothman er al. (2010) described the relationship between L; and 7;. Therefore, we can write
%, = T7'D;T;" which is equivalent to (3.6).

Proposition 2. X; in (3.11) is positive definite when IVs are positive.

Proof: Let x be an arbitrary nonzero vector. Then x” Z;x = xL;D;L! x. For z = LT x, x"%;x = 2" Djz.
Since L; is invertible and o-izl >0fort=1,...,n; Z; is positive definite. O

The parameters, GMAPs and IVs can be modeled z;;; and A;; by setting the model
Lyj = z[?;jy, log o-%t = hg/l,

where y and A are ax 1 and bx1 vectors of unknown dependence and variance parameters, respectively.
Note that design vectors z;;; and h; are used to model the GMAP/IV parameters as functions of
subject-specific covariates. GMAP/IV parametrization have several advantages. First, the parameters
have a nice interpretation because of the linear combination of covariates in GMAPs and IVs. Second,
the covariance matrix X; can be heterogeneous depending on covariates when it is calculated using
GMAPs and IVs.

3.4. Bayesian approach

In this subsection, we present a Bayesian approach for our proposed models. While the choice of prior
distribution has been studied for linear regression model, there has been less work for GLMs. Propri-
ety of the posterior distribution for logistic regression model using noninformative prior was presented
in Chen and Shao (2001) and Ibrahim and Laud (1991). In our model, we use proper prior distribution
instead of noninformative prior to guarantee the propriety of posterior distribution. The prior distribu-
tions for Bo1, . .., Bok-1), B, v, and A in the model with the random effects precision/covariance matrix
are given by

(0.031). (3.12)

Bor ~ N (0,07, ) (3.13)
Boi ~ N (0,05, ) Lgy 0, fork=2,... . K-1, (3.14)
(0.021), (3.15)

A~ N(0,031), (3.16)
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where [ is the identity matrix, oﬁm, a‘éﬂz, o O’éO,K—l’ 0'2,, 0'3, and o are in general large to be nonin-
formative (Daniels and Zhao, 2003). Since the intercepts 8y have a constraint (8p; < -+ < Bo.x-1), We
used the truncated normal distributions (SAS manual, http://support.sas.com/rnd/app/examples/stat/
BayesMulti/new_exampley/).

From the sampling distribution (3.1) and prior distribution (3.12)—(3.16), we have the joint distri-

bution given by

N n K
P (., 8,80, ) o []_[ {1_[ [ n,-fk(boyffk} ¢ (bily, )

i=1 \t=1 k=1
X ¢ (Bol0. 05, ) Ligy <<y (B0, 5) & (710, 02) ¢ (10, 3.

where mi(bi) = P, (b) = P, (bi) with PS,(bi) = P(Yy < klbi, i) (P (bir) = 0, Piye(bir) = 1) for
k=1,...,K and ¢(-) is the multivariate normal distribution function.

Since full conditionals are not closed forms (see Appendix), the parameters are drawn using a
random walk Metropolis-Hastings algorithm. In practice, posterior computation proceeds via Markov
chain Monte Carlo (MCMC) which can be easily implemented by WinBUGS (http://www.mrc-bsu.ca
m.ac.uk/bugs/winbugs/cont- ents.shtml). The truncated normal prior distributions for Sy ’s are imple-
mented using WinBUGS development interface (WBDev; Spiegelhalter et al., 2003). The MCMC
algorithm simulates direct draws from the above full conditionals iteratively until convergence is
achieved.

3.5. Model selection

In Bayesian modeling, there are two common model selection criteria, posterior predictive loss (Gelfa-
nd and Ghosh, 1998) and Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). They
both take into account goodness of fit while penalizing models for overfitting (complexity penalty)
(Daniels and Hogan, 2008). The posterior predictive loss quantifies the fit of the model by comparing
features of the (model-based) posterior predictive distribution to equivalent features of the observed
data. The comparison is based on a user-chosen loss function such as squared error loss. We use DIC
for model selection in this paper since it is not easy to choose a proper loss function in categorical
data.

The DIC is similar to Akaike Information Criterion (AIC) and is computed as the mean deviance
minus the deviance evaluated at the posterior mean. Let 6 be the vector of all parameters in our
proposed models. The DIC is given by

DIC = Dev(6) + pp
= D) +2pp
= 2Dev(d) — D(6),

where Dev(0) = —2log L(6|y) and pp = Dev(6) — D(0).

Here L(Aly) is the likelihood of y = (y1, ..., ywx)T, and Dev() is the posterior mean of deviance and
D(6) = Dev [E¢(0]y)]. Note that Dev(6), which is evaluated at the posterior mean of the parameters, is
for a goodness-of-fit term and pp is the effective number of parameters. For random effects models,
the dimension of the parameter space is less clear and depends on the degree of heterogeneity between
subjects.
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4. Simulation study

We conducted small simulation studies to examine the properties of the proposed model to illustrate
the performance of our algorithm.

Study 1. We simulated longitudinal data under our proposed model (3.1) and (3.2) with a precision
matrix. The model was specified as

% = Box + B1Group; + B, Time;; + B3Group; X Time;; + by, “4.1)
for j = 1,...,10 where (Bo1,802,803,81,52,63) = (-1.4,0.1,1.5,0.1,-0.1,0.1), Time;; ~ N(0,1)
fort = 1,...,10, Group; equals O or 1 with an approximately equal sample size per group, ¢;;; =
0.9 x 1|j_[\=1, and IOgO'iZj =0.1.

We generated 30 simulated data sets each with a sample size of 500. Then we fit 3 models with the
simulated data using Bayesian methodology. For each model, we use the same true mean but different
covariance structures. Model 1 is the true model; Model 2 has a structure of the covariance matrix
with [jj; = yo X I}j—_y=1 and log o-izj = Ap; Model 3 has a random intercept model with a scalar variance,

log o-izj = Ap. For missingness, we specified the following MAR dropout model,
logitP (dropout = f|dropout > ¢) = =2.0 + 0.1Y;,_;.

Based on this specification, the observed dropout rates were approximately 50%.

Table 1 presents the average of posterior means of estimates and the percent relative biases of
the parameters. In the presence of MAR missingness, the estimates in Models 1 and 2 had smaller
biases than those in Model 3. In particular, the percent relative biases of Bys show that Models 1
and 2 fit better than Model 3. It indicates that ignoring the serial correlation structure can induce
large biases in mean parameters. The biases in Models 1 and 2 were relatively small since the true
covariance structure was assumed to be covariate-independent random effects covariance matrix (i.e.,
homoscedastic). We also calculated the estimated covariance matrix using the mean of 30 fitted values
of v and A. Then we calculated the sum of absolute difference (SAD) between the estimated and true
covariance matrices. The SAD for Model 1 was the smallest among the three models (as expected).

Study 2. We also generated 30 longitudinal data with a sample size of 500 using Model (4.1) with a
random effects covariance matrix by setting ¢;;; = 0.9 x 1j;_;1 and log a'izj = 0.2+ 0.2Group;. That is,
the random effects covariance matrix was heteroscedastic (covariate-dependent) (Heagerty and Kur-
land, 2001). Similar to Study 1, we fit three models. Model 1 is the true model (with heteroscedastic
AR(1) structure of the covariance matrix); Model 2 has a structure of the homogeneous AR(1) covari-
ance matrix with ¢;; = yo X Ijj_;=1 and log O'fj = Aop; Model 3 has a structure of the homogeneous
MAC(1) covariance matrix with };; = vy X _;=1 and log a'izj = Ao.

Table 2 presents the average of posterior means of estimates and the percent relative biases of the
parameters. The estimates in Model 1 had smaller biases than those in Models 2 and 3. It indicates
that ignoring heteroscedastic structure can induce biases in mean parameters. The SAD for Model 1
was the smallest among the three models (as expected). We also calculated average DIC values for
three models using the 30 longitudinal data. As we expected, the DIC for Model 1 was the smallest
among the three models.
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Table 1: Simulation results for parameter estimates in Study 1 (bias of Models 1-3 for sample sizes of 500 and
T = 10 for 30 simulated data sets under mis-specification of dependence).

Model 1 Model 2 Model 3
Mean Mean Mean
(SD) RB (SD) RB (SD) RB

Boi —1.422 1.6 -1.407 0.5 —1.155 -17.5
(-1.4) (0.099) (0.103) (0.085)

Loz 0.096 -4.0 0.104 4.0 0.081 -19.0
(0.1) (0.092) (0.096) (0.083)

Bos 1.517 1.1 1.509 0.6 1.227 -18.2
(1.5) (0.103) (0.104) (0.086)

Bi 0.109 9.0 0.105 5.0 0.086 -14.0
(0.1) (0.054) (0.053) (0.045)

B2 -0.109 9.0 -0.114 14.0 -0.092 - 8.0
(=0.1) (0.132) (0.131) (0.116)

B3 0.088 -12.0 0.093 -7.0 0.077 -23.0
(0.1) (0.073) (0.075) (0.064)

Y0 0.897 0.899

0.9) (0.026) (0.025)

Ao 0.131 0.109 0.212

0.1) (0.167) (0.154) (0.098)
SAD 16.25 101.89 127.76

Displayed is the average posterior mean of regression coefficient estimate (Mean), the percent relative bias (RB) (8 — 8)/8 X
100), the average posterior standard deviation (SD) of 30 estimates, and sum of absolute difference (SAD) between the
estimated and true covariance matrices for Models 1-3.

5. Analysis of lung cancer data

We used the approach proposed in Section 3 to analyze the QOL data from Section 2. In our analysis,
we used 93 patients without missing data at baseline. To examine treatment differences in appetite
levels, we included each type of treatment (Arm = 1 for Gefitinib, O for Erlotinib) and visit numbers
(Time = 0.0, 0.1, ..., 2.4) re-scaled. We assumed the missing responses (mostly due to dropout) were
missing at random in our initial analysis.

5.1. Models fit

We fit eight models for Z; under an assumption of ignorable dropout (Table 3). Models 1 and 2
are cumulative logit random effects models with a random effects precision matrix having ¢;; =
Yo X Ijj—y=1. The precision covariance matrix for Model 1 is homogeneous and that for Model 2 is
heterogeneous depending on arm. Models 3 and 4 are cumulative logit random effects models with
a random effects precision matrix having ¢;;; = yol(—ji=1) + v2{(—j=2)- Model 3 has a homogeneous
precision matrix and Model 4 has a precision matrix depending on arm. Models 5-8 are cumulative
logit random effects models with a random effects covariance matrix having similar structures to
Models 1-4. Table 3 shows detailed descriptions of Models 1-8.

For the estimation of the eight models, MCMC was implemented using WinBUGS 1.4.3 and R
using the function R2ZWinBUGS (Sturtz et al., 2005). The WinBUGS code is available upon request.
The posterior means were calculated with a sample size of 50,000, burn-in period of 3,000, and thin
of 5.

The posterior means, 95% credible intervals, and the DIC values for Models 1-8 are given in Table
4. We compare Models 1-8 using the DICs. The DIC values for Models 1-8 are 1305.37, 1304.86,
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Table 2: Simulation results for parameter estimates in Study 2 (bias of Models 1-3 for sample sizes of 500 and
T = 10 for 30 simulated data sets under mis-specification of dependence).

Model 1 Model 2 Model 3
Mean Mean Mean
(SD) RB (SD) RB (SD) RB

Boi —1.439 2.8 -1.379 - 15 -1.378 - 14
(-1.4) (0.127) (0.096) (0.097)

B2 0.082 —-18.0 0.079 -21.0 0.080 -20.0
0.1 (0.101) (0.093) (0.095)

Loz 1.512 0.8 1.449 - 34 1.449 - 34
(1.5) (0.116) (0.097) (0.098)

Bi 0.110 10.0 0.113 13.0 0.113 13.0
0.1) (0.054) (0.052) (0.053)

B2 -0.079 -21.0 -0.073 -27.0 -0.073 -27.0
(-0.1) (0.139) (0.129) (0.131)

B3 0.087 -13.0 0.080 -20.0 0.080 -20.0
0.1) (0.078) (0.074) (0.074)

Y0 0.892 0.922 0.922

0.9 (0.029) (0.016) (0.016)

Ao 0.173 0.000 0.000

0.1) (0.204) (0.334) (0.317)

A1 0.161

0.2) (0.140)

SAD 17.862 25.955 126.649

DIC 9402.041 9441.233 9441.065

Displayed is the average posterior mean of regression coefficient estimate (Mean), the percent relative bias (RB) ((8 —)/8 X
100), the average posterior standard deviation (SD) of 30 estimates, and sum of absolute difference (SAD) between the
estimated and true covariance matrices for Models 1-3.

Table 3: Models fit with wy;, z;;; and h;

[

Model 1 Sitj = Yoli-ji=1) logos, = o
Model 2 Birj = Yoli—ji=1) + Y1 L= j=1)Arm; logo? = Ao + A Arm;
Model 3 Gitj = Yolr-ji=1) + Y2l (r—ji=2) logo? = Ao
Model 4 Gitj = Yoli-ji=1) + Y1l(—ji=0) Arm; + y2l(— ji=2) + V31— j=2) Arm; log o-l.zr = Ao + A1 Arm;
Model 5 lij = Yol (r-ji=1) logo? = Ay
Model 6 litj = yolqi- ji=1) + Y11(- jl=1)Arm; log o-l.zr = Ao + A1 Arm;
Model 7 Ly = Yolg—ji=1) + V2l (= ji=2) logo? = Ay
Model 8 litj = Yolqi-ji=1) + Y1l q- =1y Arm; + y2l(i—ji=2) + Y31(1- jl=2) Arm; log o-[.zt = Ao + A1 Arm;

1212.49, 1215.93, 1378.58, 1378.99, 1334.51 and 1338.42, respectively. It indicates that Model 3
substantially is the best out of all the eight models. However, Models 3 and 4 had comparable DIC
values. The posterior means of estimates for fixed effect parameters were similar in the two models.

We now focus on Models 3 by parsimonious rule. Remember Appetite was measured on a 4 point
ordinal scale (1: I always did not lose my appetite; 2: I sometimes lost my appetite; 3: I frequently
lost my appetite; 4: I usually lost my appetite). In Model 3, the 95% credible intervals for coefficients
of Time and interaction of Time and Arm did not include zero indicating that patients’ QOL were
different between two arms. In erlotinib, the log odds of the conditional posterior probability of
losing appetite decreased by 0.1721 (0.1721 = (1.721 x 0.1)) as visit number increased by 1. In
gefitinib, the log odds of the conditional posterior probability of losing appetite increased by 0.0647
(—0.0647(= (1.721 — 2.368) x 0.1)) as visit number increase by 1.
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Table 4: Posterior means for Bayesian cumulative logit random effects model (95% credible intervals in the
parentheses)

Modeling of random effects precision matrix

Model 1 (Constant) Model 2 (Arm) Model 3 (Constant) Model 4 (Arm)
Intercept: Bo
Boi —2.121%(-3.525, —-0.880) —2.121%(-3.451, —0.845) —2.623*(-4.717, -0.906) —2.617*(-4.655, —1.003)
Bo2 1.392%(0.108, 2.665) 1.417%(0.184, 2.703) 2.015%(0.344, 4.139) 1.973%(0.422, 3.938)
Bo3 3.713%(2.373, 5.178) 3.761%(2.431, 5.215) 5.035%(2.980, 8.301) 4.968(3.001, 7.892)
Fixed parameters: 8
Time/10 1.425%(0.288, 2.648) 1.442%(0.340, 2.590) 1.721%(0.206, 3.473) 1.737*(0.356, 3.371)
Arm 1.786"(0.088, 3.539) 1.810%(0.060, 3.611) 2.111 (-0.142,4.602)  2.148 (—0.084, 4.578)
Time/10xArm  —1.950%(-3.646, —0.299) —2.038*(-3.744, —0.386) —2.368*(—4.820, —0.230) —2.449%(—4.828, —0.307)
GARP: y
o (AR(1)) 0.935%(0.868, 0.996) 0.894%(0.79, 0.983) 0.605%(0.457, 0.796) 0.564*(0.377, 0.799)
1 (AR(1)xArm) 0.073 (-0.043, 0.195) 0.100 (-0.174, 0.374)
72 (AR(2)) 0.323%(0.142, 0.476) 0.320%(0.093, 0.519)
3 (AR(2)XArm) —-0.015"(-0.311, 0.277)
IV parameters: 4
Ao 1.084"(0.489, 1.734) 1.026%(0.324, 1.759) 2.079%(1.118, 3.268) 1.979*(1.010, 3.096)
A1 (Arm) 0.185 (-0.426, 0.791) 0.155 (-0.366, 0.675)
Dev(6) 1027.340 1021.860 824.203 830.097
PD 278.022 283.003 388.282 385.830
DIC 1305.370 1304.860 1212.490 1215.930

Modeling of random effects covariance matrix

Model 5 (Constant) Model 6 (Arm) Model 7 (Constant) Model 8 (Arm)
Intercept: By
Boi —1.768*(-2.849, —0.775) —1.691*(-2.736, —-0.687) —1.935"(-3.203, -0.79) —1.770%(-2.947, —0.659)
Bo2 1.175%(0.150, 2.191) 1.258%(0.252,2.262) 1.350%(0.182, 2.552) 1.467%(0.394, 2.588)
Bo3 3.158%(2.095, 4.254) 3.248%(2.200, 4.336) 3.532%(2.279, 4.931) 3.623%(2.477, 4.895)
Fixed parameters: 8
Time/10 1.1887(0.268, 2.123) 1.132%(0.278, 2.037) 1.292*(0.257, 2.409) 1.172%(0.213, 2.186)
Arm 1.502*(0.172, 2.883) 1.432%(0.062, 2.864) 1.613%(0.023, 3.243) 1.459 (-0.073, 3.003)
Time/10xArm  —1.623%(-2.947, —0.336) —1.608*(-2.985, —0.312) —1.798*(-3.312, —0.295) —1.712*(-3.206, —0.258)
GMAP: n
no (AR(1)) 0.923%(0.847, 0.989) 0.878%(0.759, 0.977) 0.474%(0.353, 0.637) 0.4427%(0.286, 0.661)
11 (AR(1)XArm) 0.076 (-0.055, 0.216) 0.098 (-0.163, 0.359)
7 (AR(2)) 0.384%(0.251, 0.508) 0.374%(0.186, 0.545)
73 (AR(2)XArm) —-0.002 (-0.261, 0.248)
IV parameters: 4
Ao —-0.456 (-1.009,0.119) -0.486 (—1.19, 0.189) 0.692 (-0.086, 1.537)  0.553 (-0.304, 1.409)
A1 (Arm) 0.133 (-0.668, 0.913) 0.119 (-0.692, 0.935)
Dev(6) 1179.980 1177.340 1086.430 1096.390
PD 198.597 201.648 248.082 242.025
DIC 1378.580 1378.990 1334510 1338.420

GARP=generalized autoregressive parameter; AR=autoregressive; [V=innovation variance; DIC=Deviance Information Cri-
terion. * indicates the 95% credible interval does not include zero.

In the log(IV), the intercept (1) was above zero which indicates random variation between random
effects. The posterior means for D were given by

E(Dly) = diag(7.996,7.996, . ..,7.996,7.996).

In the GARP, the posterior mean of coefficient (y) for lag 1 was positive and the credible interval was
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above zero which implies a positive relationship between random effects with lag 1. The posterior
mean of coefficient for lag 2 also indicates a positive relationship between random effects with lag 2.

5.2. Convergence check

Now we focus on the best model, Model 3 and we check the model convergence using both history
plots in WinBUGS. Figure 2 presents history plots with two chains with different starting points. We
observed that the lines of different chains mix and cross in trace plots; therefore, the convergence is
ensured.

6. Conclusion

We proposed Bayesian cumulative random effects models for longitudinal ordinal data with the gen-
eral random effects precision/covariance matrix using MCD or MACD, respectively. The decomposi-
tions factor the random effects precision/covariance matrix to GARPs/GMAPs and IVs. The precision
(covariance) matrix can be heterogeneous depending on covariates using the regression modeling of
GARP (GMAP)/IV, and the covariance matrix is positive definite when I'Vs are positive.

The proposed models were implemented using the Bayesian approach for parameter estimation.
WinBUGS program was used to fit the Bayesian models. Analysis results show that the random ef-
fects covariance matrix was homogeneous with the AR(2) structure. It indicates that between-subject
variation was homogeneous over subjects and that lag-1 and 2 correlations were positive with lag-1
and 2 correlations of 0.993 and 0.997, respectively. The posterior cumulative conditional probability
of appetite decreases as visit increases for gefitinib. Similarly, the posterior cumulative probability
decreases for erlotinib. Therefore, the QOL of patients was different between two arms over time.
The codes for our proposed models are available upon request.

MCD or MACD can be extended to nominal random effects models for analysis of longitudinal
nominal data. However, the random effects covariance matrix in nominal random effects models may
be a Kronecker product of the correlation matrix for serial dependence and the covariance matrix
among categories at the same time (Galecki, 1994; Lee et al., 2011). Therefore, the two decomposi-
tions are not directly extended for the nominal random effects models.
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Appendix: Full conditionals

Full conditional posterior distributions are required to implement the Markov chain Monte Carlo
(MCMC) algorithm as:
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Figure 2: Trace plots of Model 3 in WinBUGS.
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Note that the full conditionals are not closed forms.
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