• 제목/요약/키워드: Raman intensity

검색결과 134건 처리시간 0.018초

Facile Synthesis of CdTe Nanorods from the Growth of Te Nanorods

  • Xu, Weiwei;Niu, Jinzhong;Zheng, Shuang;Tian, Guimin;Wu, Xinghui;Cheng, Yongguang;Hu, Xiaoyang;Liu, Shuaishuai;Hao, Haoshan
    • 대한화학회지
    • /
    • 제61권4호
    • /
    • pp.185-190
    • /
    • 2017
  • One-dimensional CdTe nanorods (NRs) are obtained by the reaction of various Cd precursors with single crystalline Te nanorod templates, which are pre-synthesized from Te precursors by a simple and reproducible solvothermal method. Throughout the process, the diffraction intensity of different crystal facets of single crystalline Te NRs varied with reaction times. Finally, by alloying Cd ions along the axial direction of Te NRs, polycrystalline cubic phase CdTe NRs with diameters of 80-150 nm and length up to $1.2-2.4{\mu}m$ are obtained. The nucleation and growth processes of Te and CdTe NRs are discussed in details, and their properties are characterized by XRD, SEM, TEM, Raman scattering, and UV-vis absorption spectra. It was found that the key elements of synthesizing CdTe NRs such as reaction temperatures and Cd sources will strongly influence the final shape of CdTe NRs.

Microwave Sol-Gel Derived Ho3+/Yb3+ Co-Doped NaCaGd(MoO4)3 Phosphors and their Upconversion Photoluminescence

  • Lim, Chang Sung
    • 한국세라믹학회지
    • /
    • 제53권4호
    • /
    • pp.456-462
    • /
    • 2016
  • $NaCaGd(MoO_4)_3:Ho^{3+}/Yb^{3+}$ ternary molybdates were successfully synthesized by microwave sol-gel method for the first time. Well-crystallized particles formed after heat-treatment at $900^{\circ}C$ for 16 h showed a fine and homogeneous morphology with particle sizes of $3-5{\mu}m$. Under excitation at 980 nm, the UC intensities of the doped samples exhibited strong yellow emissions based on the combination of strong emission bands at the 520-nm and 630-nm emission bands in the green and red spectral regions, respectively. The strong 520-nm emission band in the green region corresponds to the $^5S_2/^5F_4{\rightarrow}^5I_8$ transition of $Ho^{3+}$ ions, while the strong 630-nm emission band in the red region appears to be due to the $^5F_5{\rightarrow}^5I_8$ transition of the $Ho^{3+}$ ions. The optimal $Yb^{3+}:Ho^{3+}$ ratio was found at 9:1, as indicated by the composition-dependent quenching effect of $Ho^{3+}$ ions. The pump power dependence of the upconversion emission intensity and the Commission Internationale de L'Eclairage chromaticity coordinates of the phosphors were evaluated in detail.

레이저 흡수법을 이용한 제논 플라즈마 분석 (Analysis of Xe Plasma by LAS)

  • 양종경;허인성;이종찬;최용성;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.220-222
    • /
    • 2005
  • We can classify two cases in a way to observe an atom of gas state or a molecule using the laser. First case is way to use dispersion phenomenon like Rayleigh scattering, Thomson scattering, Mie scattering, Raman Scattering. And Second case is a way to use change phenomenon like a LAS (Laser Absorption Spectroscopy), LIF (Laser Induced Fluorescent). In this paper, we have measured the meta-stable density and the distribution by using a LAS method in Xe discharge lamp. The laser absorption spectroscopy (LAS) is useful to investigate the behavior of such species. The xenon atoms in the $1S_4$ and $1S_5$ generate excited $Xe^*$(147nm) and $Xe_{2}^*$(173nm) dimers in Xe plasma. It is found that the intensity of VUV 147nm emission is proportional to that of the IR 828nm emission, and the VUV 173nm emission is roughly proportional to that of the IR 823nm emission. The laser is used CW laser that consist of AlGaAs semiconductor and energy level is used 823.16nm wavelength. We measured signal of monochrometer from the lamp center while will change a discharge electric current by 6mA in 3mA and calculated meta-stable state density of a xenon atom through a measured value.

  • PDF

Microwave Sol-Gel Derived NaGd(MoO4)2:Ho3+/Yb3+ Phosphors and Their Upconversion Photoluminescence Properties

  • Lim, Chang Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권6호
    • /
    • pp.364-369
    • /
    • 2017
  • Double molybdate $NaGd_{1-x}(MoO_4)_2:Ho^{3+}/Yb^{3+}$ phosphors with proper doping concentrations of $Ho^{3+}$ and $Yb^{3+}$ ($x=Ho^{3+}+Yb^{3+}$, $Ho^{3+}=0$ and 0.05, and $Yb^{3+}=0$, 0.35, 0.40, 0.45, and 0.50) were successfully synthesized using the microwave sol-gel method. Well-crystallized particles formed after heat-treatment at $800^{\circ}C$ for 16 h showed fine and homogeneous morphologies with particle sizes of $1{\sim}3{\mu}m$. The spectroscopic properties were examined using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the upconversion doped samples exhibited strong yellow emissions, from the combination of strong emission bands at 545 nm and 655 nm in the green and red spectral regions, respectively. The strong 545 nm emission band in the green region corresponded to the $^5S_2/^5F_4{\rightarrow}^5I_8$ transition in the $Ho^{3+}$ ions, while the strong 655 nm band in the red region appeared because of the $^5F_5{\rightarrow}^5I_8$ transition in the $Ho^{3+}$ ions. The pump power dependence and the Commission Internationale de L'Eclairage chromaticity of the upconversion emission intensity were evaluated in detail.

CARS 장치를 이용한 가스 터빈 연소기의 연료노즐 근처 화염 온도 분포 변화측정 (Measuement of Temperature Probability Density Functions Variation in a Flame Near Fuel Nozzle of Gas Turbine Combustor Sector Rigs by CARS Thermometry)

  • 박철웅;이종호;한영민;고영성;이강엽;김형모;이수용;양수석;이대성;전충환;장영준;신현동;한재원
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.7-14
    • /
    • 2002
  • The probability density functions (PDF) of temperature were measured by coherent anti-Stokes Raman Spectroscopy (CARS) in flames of gas turbine combustor sector rig of an aero-engine. The combustor was operated at simulated ground idle conditions with standard kerosene fuel. Temperature PDFs had been measured near fuel nozzle with change of rotation of a swirler and existence of a prefilmer. The characteristic features of temperature PDFs showed the variation of combustion configurations at four experimental conditions. Without a prefilmer, large recirculation of high temperature gas was expected in the co-flow condition and un vaporized fuel fragments were detected in the counter-flow condition. With a prefilmer, the enhanced mixing increased combustion intensity near fuel nozzle in the counter-flow condition and the flame was attached far from the fuel nozzle in the co-flow condition.

  • PDF

Synthesis of NaCaLa(MoO4)3:Ho3+/Yb3+ Phosphors via Microwave Sol-Gel Route and Their Upconversion Photoluminescence Properties

  • Lim, Chang Sung
    • 한국재료학회지
    • /
    • 제26권7호
    • /
    • pp.363-369
    • /
    • 2016
  • $NaCaLa_{1-x}(MoO_4)_3:Ho^{3+}/Yb^{3+}$ ternary molybdates with proper doping concentrations of $Ho^{3+}$ and $Yb^{3+}$ (x = $Ho^{3+}+Yb^{3+}$, $Ho^{3+}$ = 0.05 and $Yb^{3+}$ = 0.35, 0.40, 0.45 and 0.50) were successfully synthesized by microwave sol-gel method. Well-crystallized particles formed after heat-treatment at $900^{\circ}C$ for 16 h showed a fine and homogeneous morphology with particle sizes of $3-5{\mu}m$. Under excitation at 980 nm, the UC intensities of the doped samples exhibited strong yellow emissions based on the combination of strong emission bands at 520-nm and 630-nm emission bands in the green and red spectral regions, respectively. The optimal $Yb^{3+}:Ho{3+}$ ratios were obtained at 9:1 and 10:1, as indicated by the composition-dependent quenching effect of the $Ho^{3+}$ ions. The pump power dependence of the upconversion emission intensity and the Commission Internationale de L'Eclairage chromaticity coordinates of the phosphors were evaluated in detail.

Low Temperature Growth of Single-walled Carbon Nanotube Forest

  • Lee, Il-Ha;Im, Ji-Woon;Kim, Un-Jeong;Bae, Eun-Ju;Kim, Kyoung-Kook;Lee, Eun-Hong;Lee, Young-Hee;Hong, Seung-Hun;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2819-2822
    • /
    • 2010
  • Forest of single-walled carbon nanotubes (SWNTs) was grown at $450^{\circ}C$ by water-plasma chemical vapor deposition using ultrathin iron on alumina supporting film. The growth rate of the SWNT forest is ${\sim}0.9\;{\mu}m/min$, and the diameters of nanotubes are mainly in a range of 3.0 ~ 3.5 nm. The low intensity ratio of D- to G-band ($I_D/I_G$ ~ 0.098) in Raman spectra indicates that our SWNT forest grown at $450^{\circ}C$ is fairly pure and crystalline. This low temperature growth of SWNT forest may enable variable applications requiring the vertically-aligned nanotubes to obtain large surface area.

Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

  • Kim, Byung-Woo;Chung, Hae-Geun;Min, Byoung-Koun;Kim, Hong-Gon;Kim, Woong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3697-3702
    • /
    • 2010
  • We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via water-assisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was $7.1{\pm}1.5\;nm$, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (~94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ~20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors.

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.

수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구 (A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma)

  • 조성일;정구환
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.