Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.4.185

Facile Synthesis of CdTe Nanorods from the Growth of Te Nanorods  

Xu, Weiwei (College of Science, Henan Institute of Engineering)
Niu, Jinzhong (College of Science, Henan Institute of Engineering)
Zheng, Shuang (College of Science, Henan Institute of Engineering)
Tian, Guimin (College of Science, Henan Institute of Engineering)
Wu, Xinghui (College of Science, Henan Institute of Engineering)
Cheng, Yongguang (College of Science, Henan Institute of Engineering)
Hu, Xiaoyang (College of Science, Henan Institute of Engineering)
Liu, Shuaishuai (College of Science, Henan Institute of Engineering)
Hao, Haoshan (College of Science, Henan Institute of Engineering)
Publication Information
Abstract
One-dimensional CdTe nanorods (NRs) are obtained by the reaction of various Cd precursors with single crystalline Te nanorod templates, which are pre-synthesized from Te precursors by a simple and reproducible solvothermal method. Throughout the process, the diffraction intensity of different crystal facets of single crystalline Te NRs varied with reaction times. Finally, by alloying Cd ions along the axial direction of Te NRs, polycrystalline cubic phase CdTe NRs with diameters of 80-150 nm and length up to $1.2-2.4{\mu}m$ are obtained. The nucleation and growth processes of Te and CdTe NRs are discussed in details, and their properties are characterized by XRD, SEM, TEM, Raman scattering, and UV-vis absorption spectra. It was found that the key elements of synthesizing CdTe NRs such as reaction temperatures and Cd sources will strongly influence the final shape of CdTe NRs.
Keywords
Solvothermal method; Te; CdTe; Nanorods;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66.   DOI
2 Manzoor, U.; Kim, D. K. Scripta Mater. 2006, 54, 807.   DOI
3 Utama, M. I.; Zhang, J.; Chen, R.; Xu, X.; Li, D.; Sun, H.; Xiong, Q. Nanoscale 2012, 4, 1422.   DOI
4 Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, 462.   DOI
5 Yang, J.; Gao, Y.; Kim, J. W.; He, Y.; Song, R.; Ahn, C. W.; Tang, Z. Phys. Chem. Chem. Phys. 2010, 12, 11900.   DOI
6 You, H.S.; Choi K. S.; Bae P. K.; Kim, K. N.; Jang, H. G.; Kim Y.; Kim C. H. Bull. Korean Chem. Soc. 2009, 30, 3137.   DOI
7 Lin, Z. H.; Yang, Z.; Chang, H. T. Cryst. Growth Des. 2008, 8, 351.   DOI
8 Gautam, U. K.; Rao, C. N. R. J. Mater. Chem. 2004, 14, 2530.   DOI
9 Xi, G.; Liu, Y.; Wang, X.; Liu, X.; Yiya Peng, A.; Qian, Y. Crys. Growth Des. 2006, 6, 2567.   DOI
10 Wu, X. P.; Yuan, L.; Zhou, S. M.; Lou, S. Y.; Wang, Y. Q.; Gao, T.; Liu, Y. B.; Shi, X. J. J. Nanopart. Res. 2012, 14, 721.   DOI
11 Wu, X.; Wang, Y.; Zhou, S.; Gao, T.; Wang, K.; Lou, S.; Liu, Y.; Shi, X. Cryst. Growth Des. 2012, 13, 136.
12 Narayanan, R.; Sarkar, D.; Som, A.; Wleklinski, M. S.; Cooks, R. G.; Pradeep, T. Anal. Chem. 2015, 87, 10792.   DOI
13 Dong, G. H.; Zhu, Y. J.; Cheng, G. F.; Ruan, Y. J. Mater. Lett. 2012, 76, 69.   DOI
14 Zhou, C.; Dun, C.; Wang, Q.; Wang, K.; Shi, Z.; Carroll, D. L.; Liu, G.; Qiao, G. ACS Appl. Mat. Interfaces 2015, 7, 21015.   DOI
15 Bhatt, R.; Krishnan, G.; Bhattacharya, S.; Bohra, A.; Bhatt, P.; Basu, R.; Singh, A.; Aswal, D. K.; Gupta, S. K. Aip Conference Proceedings 2016, 1731, 4261.
16 Ananthakumar, S.; Ramkumar, J.; Babu, S. M. Mater. Sci. in Semicond. Process. 2014, 27, 12.   DOI
17 Hou, T. C.; Yang, Y.; Lin, Z. H.; Ding, Y.; Chan, P.; Pradel, K. C.; Chen, L. J.; Wang, Z. L. Nano Energy 2013, 2, 387.   DOI
18 Kim, S. H.; Kim, J. J.; Suh, S. W.; Park, B. K.; Lee, J. B. J. Ind. Eng. Chem. 2010, 16, 741.   DOI
19 Shen, H.; Wang, H.; Chen, X.; Niu, J. Z.; Xu, W.; Li, X. M.; Jiang, X. D.; Du, Z.; Li, L. S. Chem. Mater. 2010, 22, 4756.   DOI
20 Hwang, C. H.; Park, J.; Song, M.; Lee, J.; Shim, I. Bull. Korean Chem. Soc. 2011, 32, 2207.   DOI
21 Zheng, R.; Guo, S.; Dong, S. Inorg. Chem. 2007, 46, 6920.   DOI
22 Sun Y.; Yin Y.; Mayers B. T.; Herricks T.; Xia Y. Chem. Mater. 2002, 14, 4736.   DOI
23 Yong, S. M.; Muralidharan, P.; Jo, S. H.; Kim, D. K. Mater. Lett. 2010, 64, 1551.   DOI
24 Zhang, L.; Yang, H.; Yu, J.; Shao, F.; Li, L.; Zhang, F.; Zhao, H. J. Phys. Chem. C 2009, 113, 5434.   DOI
25 Wang, J.; Wang, X.; Peng, Q.; Li, Y. Inorg. Chem. 2004, 43, 7552.   DOI
26 Mayers, B.; Xia, Y. J. Mater. Chem. 2002, 12, 1875.   DOI
27 Mayers, B.; Xia, Y. Adv. Mater. 2002, 14, 279.   DOI
28 Wei, G.; Deng, Y.; Lin, Y. H.; Nan, C. W. Chem. Phy. Lett. 2003, 372, 590.   DOI
29 Lu, Q.; Gao, F.; Komarneni, S. Adv. Mater. 2004, 16, 1629.   DOI
30 Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L. Angew. Chem. Int. Ed. 2004, 43, 1410.   DOI
31 Yan, C.; Raghavan, C. M.; Kang, D. J. Mater. Lett. 2014, 116, 341.   DOI
32 Mak, J. S. W.; Farah, A. A.; Chen, F.; Helmy, A. S. Acs Nano 2011, 5, 3823.   DOI
33 Ma, L.; Wei, Z.; Zhang, F.; Wu, X. Superlattices Microstruct. 2015, 88, 536.   DOI