Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.6.179

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality  

Park, Hyun Jae (Plasma Technology Research Center, National Fusion Research Institute (NFRI))
Shin, Jin-ha (Plasma Technology Research Center, National Fusion Research Institute (NFRI))
Lee, Kang-il (Plasma Technology Research Center, National Fusion Research Institute (NFRI))
Choi, Yong Sup (Plasma Technology Research Center, National Fusion Research Institute (NFRI))
Song, Young Il (Advanced Materials Science and Engineering, Advanced Materials and Process Research Center(AMPRC) Sungkyunkwan University)
Suh, Su Jeong (Advanced Materials Science and Engineering, Advanced Materials and Process Research Center(AMPRC) Sungkyunkwan University)
Jung, Yong Ho (Plasma Technology Research Center, National Fusion Research Institute (NFRI))
Publication Information
Applied Science and Convergence Technology / v.26, no.6, 2017 , pp. 179-183 More about this Journal
Abstract
The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.
Keywords
PECVD; Graphene nano-walls; Direct growth; Langmuir probe; Raman; RGA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, NanoLett. 11, 2644-2647 (2011).   DOI
2 Y. Zhu, S. Murali, Meryl D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Science 332, 1537-1541 (2011).   DOI
3 T. H. Han, Y. Lee, M. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, Nat. Photonics 6, 105-110 (2012).   DOI
4 M. Layani, A. Kamyshny, and S. Magdassi, Nanoscale. 6, 5581-5591 (2014).   DOI
5 S. Liu, L. Zhou, L. Yao, L. Chai, L. Li, G. Zhang, Kankan, and K. Shi, J. Alloys Compd. 612, 126 (2014).   DOI
6 S. M. Kim and K. K. Kim, Appl.Sci.Converg.Technol. 24(6), 268 (2015).   DOI
7 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nature Nanotechnology 5, 574 (2010).   DOI
8 U. Cvelbar, B. Markoli, I. Poberaj, A. Zalar, L. Kosec, and S. Spaic, Appl. Surf. Sci. 253, 1861 (2006).   DOI
9 K. S. Kim, Y. Zhao, H. Jand, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B.H. Hong, Nature 457, 706 (2009).   DOI
10 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).   DOI
11 D. Mariotti and R Mohan Sankaran, J. Phys. D: Appl. Phys. 44, 174023 (2011).   DOI
12 H. J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, and M. Hori, Carbon 68, 308 (2014).   DOI
13 L. M. Malard, M.A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys Rep 473, 51 (2009).   DOI
14 N. Soi, S. S. Roy, C. O'Kane, J. A. D. McLaughlin, T. H. Lim, and C.J. D. Hetherington, CrystEngComm 13, 312 (2011).   DOI
15 Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 237 (2008).
16 J. S. Kim and M. A. Cappelli, J. Appl. Phys. 84, 4595 (1998).   DOI
17 D. B. Hash and M. Meyyappan, J. Appl. Phys. 93, 750 (2002).
18 R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, Adv. Mater. 22, 4014 (2010).   DOI
19 Y. Li, C. J. Liu, B. Eliasson, and Y. Wang, Energy & Fuels 16, 864 (2002).   DOI
20 Z. Bo, J. Yan, Z. Li, Y. Chi, and K. Cen, I. J. Hydrogen energy 33, 5545 (2008).   DOI
21 N. Derkaoui, C. Rond, K. Hassouni, and A. Gicquel, J. Appl. Phys. 115, 233301 (2014).   DOI
22 G. Narasimhan and Ch. Steinbruchel, J. Vac. Sci. Technol. A 19, 376 (2001).
23 W. Zhang, P. Wu, Z. Li, and J. Yang, J. Phys. Chem. C 115, 17782 (2011).   DOI
24 M. Zho, J. Wang, Brian C. Holloway, R. R. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, Carbon 45, 2229 (2007).   DOI