Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.7.363

Synthesis of NaCaLa(MoO4)3:Ho3+/Yb3+ Phosphors via Microwave Sol-Gel Route and Their Upconversion Photoluminescence Properties  

Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.26, no.7, 2016 , pp. 363-369 More about this Journal
Abstract
$NaCaLa_{1-x}(MoO_4)_3:Ho^{3+}/Yb^{3+}$ ternary molybdates with proper doping concentrations of $Ho^{3+}$ and $Yb^{3+}$ (x = $Ho^{3+}+Yb^{3+}$, $Ho^{3+}$ = 0.05 and $Yb^{3+}$ = 0.35, 0.40, 0.45 and 0.50) were successfully synthesized by microwave sol-gel method. Well-crystallized particles formed after heat-treatment at $900^{\circ}C$ for 16 h showed a fine and homogeneous morphology with particle sizes of $3-5{\mu}m$. Under excitation at 980 nm, the UC intensities of the doped samples exhibited strong yellow emissions based on the combination of strong emission bands at 520-nm and 630-nm emission bands in the green and red spectral regions, respectively. The optimal $Yb^{3+}:Ho{3+}$ ratios were obtained at 9:1 and 10:1, as indicated by the composition-dependent quenching effect of the $Ho^{3+}$ ions. The pump power dependence of the upconversion emission intensity and the Commission Internationale de L'Eclairage chromaticity coordinates of the phosphors were evaluated in detail.
Keywords
microwave sol-gel; ternary molybdate; yellow phosphors; upconversion; Raman spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. V. DaCosta, S. Doughan and U. J. Krull, Anal. Chim. Acta, 832, 1 (2014).   DOI
2 M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomed.: Nanotech. Biol. Med., 7, 710 (2011).   DOI
3 M. Lin, Y. Zho, S. Wang, M, Liu, Z. Duan, Y. Chen, F. Li, F. Xu and T. Lu, Biotechnol. Adv., 30, 1551 (2012).   DOI
4 C. S. Lim, Mater. Res. Bull., 75, 211 (2016).   DOI
5 C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, Phys. Chem. Chem. Phys., 17, 19278 (2015).   DOI
6 J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013).   DOI
7 J. Sun, Y. Lan, Z. Xia and H. Du, Opt. Mater., 33, 576 (2011).   DOI
8 C. Guo, H. K. Yang and J. H. Jeong, J. Lumin., 130, 1390 (2010).   DOI
9 Z. Shan, D. Chen, Y. Yu, P. Huang, F. Weng, H. Lin and Y. Wang, Mater. Res. Bull., 45, 1017 (2010).   DOI
10 W. Liu, J. Sun, X. Li, J. Zhang, Y. Tian, S. Fu, H. Zhong, T. Liu, L. Cheng, H. Xia, B. Dong, R. Hua, X. Zhang and B. Chen, Opt. Mater., 35, 1487 (2013).   DOI
11 W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang and W. Cao, Sens. Actuator. B Chem., 188, 1096 (2013).   DOI
12 J. Tang, C. Cheng, Y. Chen and Y. Huang, J. Alloys Compd,. 609, 268 (2014).   DOI
13 W. Zhang, J. Li, Y. Wang, J. Long and K. Qiu, J. Alloys Compd., 635, 16 (2015).   DOI
14 F. Mo, L. Zhou, Q. Pang, F. Gong and Z. Liang, Ceram. Inter., 38, 6289 (2012).   DOI
15 G. Li, S. Lan, L. Li, M. Li, W. Bao, H. Zou, X. Xu and S. Gan, J. Alloys Compd., 513, 145 (2012).   DOI
16 J. Liao, H. Huang, H. You, X. Qiu, Y. Li, B. Qui and H. R. Wen, Mater. Res. Bull., 45, 1145 (2010).   DOI
17 F. Cao, L. Li, Y. Tian and X. Wu, Optics Laser Technol., 55, 6 (2014).   DOI
18 G. M. Kuz'micheva, D. A. Lis, K. A. Subbotin, V. B. Rybakov and E. V. Zharikov, J. Cryst. Growth, 275, e1835 (2005).   DOI
19 X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu and C. Tu, J. Alloys Compd., 458, 462 (2008).   DOI
20 X. Li, Z. Lin, L. Zhang and G. Wang, J. Cryst. Growth, 290, 670 (2006).   DOI
21 Y. K. Voron'ko, K. A. Subbotin, V. E. Shukshin, D. A. Lis, S. N. Ushakov, A. V. Popov and E. V. Zharikov, Opt. Mater., 29, 246 (2009).
22 H. Lin, X. Yan and X. Wang, J. Sol. State. Chem., 204, 266 (2013).   DOI
23 G. Li, L. Li, M. Li, W. Bao, Y. Song, S. Gan, H. Zou and X. Xu, J. Alloys Compd., 550, 1 (2013).   DOI
24 Y. Huang, L. Zhou, L. Yang and Z. Tang, Opt. Mater., 33, 777 (2011).   DOI
25 L. Li, W. Zi, G. Li, S. Lan, G. Ji, S. Gan, H. Zou and X. Xu, J. Sol. State Chem., 191, 175 (2012).   DOI
26 Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, Q. Meng, R. Hua, 407, 2556 (2012).   DOI
27 J. Zhang, X. Wang, X. Zhang, X. Zhao and X. Liu, L. Peng, Inorg. Chem. Commun., 14, 1723 (2011).   DOI
28 C. S. Lim, Mater. Res. Bull., 47, 4220 (2012).   DOI
29 S. W. Park, B. K. Moon, B. C. Choi, J. H. Jeong, J. S. Bae and K. H. Kim, Curr. Appl. Phys., 12, S150 (2012).   DOI
30 C. S. Lim, Mater. Chem. Phys., 131, 714 (2012).   DOI
31 C. S. Lim, Infrared Phys. Technol., 67, 371 (2014).   DOI
32 R. D. Shannon, Acta Cryst., A32, 751 (1976).
33 F. Anzel, G. Baldacchini, L. Laversenne and G. Boulon, Opt. Mat., 24, 103(2003).   DOI
34 H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou and S. Xia, J. Phys. Chem. B, 108, 19205 (2004).   DOI
35 Y. Xu, Y. Wang, L. Shi, L. Xing and X. Tan, Opt. Laser Technol., 54, 50 (2013).   DOI
36 X. Li, Q. Nie, S. Dai, T. Xu, L. Lu and X. Zhang, J. Alloys Compd., 454, 510 (2008).   DOI
37 A. A. Savina, V. V. Atuchin, S. F. Solodovnikov, Z. A. Solodovnikova, A. S. Krylov, E. A. Maximovskiy, M. S. Molokeev, A. S. Oreshonkov, A. M. Pugachev and E. G. Khaikina, J. Solid State Chem., 225, 53 (2015).   DOI
38 V. V. Atuchin, V. G. Grossman, S. V. Adichtchev, N. V. Surovtsev, T. A. Gavrilova and B. G. Bazarov, Opt. Mater., 34, 812 (2012).   DOI
39 V. V. Atuchin, O. D. Chimitova, S. V. Adichtchev, J. G. Bazarov, T. A. Gavrilova, M. S. Molokeev, N. V. Surovtsev and Zh.G. Bazarova, Mater. Lett., 106, 26 (2013).   DOI
40 V. V. Atuchin, O. D. Chimitova, T. A. Gavrilova, M. S. Molokeev, S. J. Kim, N. V. Surovtsev and B. G. Bazarov, J. Cryst. Growth, 318, 683 (2011).   DOI
41 C. S. Lim, Infrared Phys. Technol., 76, 353 (2016).   DOI
42 C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, J. Solid State Chem., 228, 160 (2015).   DOI