DOI QR코드

DOI QR Code

Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

  • Kim, Byung-Woo (Department of Materials Science and Engineering, Korea University) ;
  • Chung, Hae-Geun (Department of Materials Science and Engineering, Korea University) ;
  • Min, Byoung-Koun (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Kim, Hong-Gon (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Kim, Woong (Department of Materials Science and Engineering, Korea University)
  • Received : 2010.10.01
  • Accepted : 2010.10.11
  • Published : 2010.12.20

Abstract

We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via water-assisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was $7.1{\pm}1.5\;nm$, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (~94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ~20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors.

Keywords

References

  1. Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. https://doi.org/10.1038/nmat2297
  2. Miller, J. R.; Simon, P. Science 2008, 321, 651. https://doi.org/10.1126/science.1158736
  3. Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11. https://doi.org/10.1016/j.jpowsour.2006.02.065
  4. Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483. https://doi.org/10.1016/S0013-4686(00)00354-6
  5. Pan, H.; Li, J. Y.; Feng, Y. P. Nanoscale Res. Lett. 2010, 5, 654. https://doi.org/10.1007/s11671-009-9508-2
  6. Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.; Kaskel, S.; Yushin, G. ACS Nano 2010, 4, 1337. https://doi.org/10.1021/nn901825y
  7. Shah, R.; Zhang, X. F.; Talapatra, S. Nanotechnol. 2009, 20, 395202 https://doi.org/10.1088/0957-4484/20/39/395202
  8. Zhang, H.; Cao, G. P.; Yang, Y. S. J. Power Sources 2007, 172, 476. https://doi.org/10.1016/j.jpowsour.2007.07.060
  9. Merkoci, A.; Pumera, M.; Llopis, X.; Perez, B.; Valle, M. del; Alegret, S. Trends Anal. Chem. 2005, 24, 826. https://doi.org/10.1016/j.trac.2005.03.019
  10. Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. J. Appl. Phys. Lett. 2005, 87, 173101 https://doi.org/10.1063/1.2108127
  11. Kim, W.; Choi, H. C.; Shim, M.; Li, Y. M.; Wang, D. W.; Dai, H. J. Nano Lett. 2002, 2, 703. https://doi.org/10.1021/nl025602q
  12. Kim, H. S.; Kim, B.; Lee, B.; Chung, H.; Lee, C. J.; Yoon, H. G.; Kim, W. J. Phys. Chem. C 2009, 113, 17983. https://doi.org/10.1021/jp9078162
  13. Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Gu, Z. N. Carbon 2008, 46, 822. https://doi.org/10.1016/j.carbon.2008.02.015
  14. Hiraoka, T.; Yamada, T.; Hata, K.; Futaba, D. N.; Kurachi, H.; Uemura, S.; Yumura, M.; Iijima, S. J. Am. Chem. Soc. 2006, 128, 13338. https://doi.org/10.1021/ja0643772
  15. Jung, Y. J.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2003, 3, 561. https://doi.org/10.1021/nl034075n
  16. Talapatra, S.; Kar, S.; Pal, S. K.; Vajtai, R.; Ci, L.; Victor, P.; Shaijumon, M. M.; Kaur, S.; Nalamasu, O.; Ajayan, P. M. Nat. Nanotechnol. 2006, 1, 112. https://doi.org/10.1038/nnano.2006.56
  17. Kim, B.; Chung, H.; Chu, K. S.; Yoon, H. G.; Lee, C. J.; Kim, W. Synth. Met. 2010, 160, 584. https://doi.org/10.1016/j.synthmet.2009.12.008
  18. Kim, B.; Chung, H.; Kim, W. J. Phys. Chem. C 2010, 114, 15223. https://doi.org/10.1021/jp105498d
  19. Ye, H. S.; Liu, X.; Cui, H. F.; Zhang, W. D.; Sheu, F. S.; Lim, T. M. Electrochem. Commun. 2005, 7, 249. https://doi.org/10.1016/j.elecom.2005.01.008
  20. Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362. https://doi.org/10.1126/science.1104962
  21. Qu, L.; Dai, L. J. Mater. Chem. 2007, 17, 3401. https://doi.org/10.1039/b703046k
  22. Zhang, H.; Cao, G. P.; Yang, Y. S.; Gu, Z. N. J. Electrochem. Soc. 2008, 155, K19. https://doi.org/10.1149/1.2811864
  23. Andreas, H. A.; Conway, B. E. Electrochim. Acta 2006, 51, 6510. https://doi.org/10.1016/j.electacta.2006.04.045
  24. Conway, B. E. Electrochemical Supercapacitors-Scientific Fundamentals and Technological Application; Kluwer Academic: New York, 1999.
  25. Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I. J. Power Sources 2010, 195, 5814. https://doi.org/10.1016/j.jpowsour.2010.03.082

Cited by

  1. Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1523
  2. Curvature Effects on the Interfacial Capacitance of Carbon Nanotubes in an Ionic Liquid vol.117, pp.45, 2013, https://doi.org/10.1021/jp408085w
  3. Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid vol.15, pp.45, 2013, https://doi.org/10.1039/C3CP52590B
  4. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review vol.19, pp.11, 2013, https://doi.org/10.1007/s11581-013-0979-x
  5. Ultrahigh-Power Flexible Electrochemical Capacitors Using Binder-Free Single-Walled Carbon Nanotube Electrodes and Hydrogel Membranes vol.118, pp.6, 2014, https://doi.org/10.1021/jp410502s
  6. Systematic review of catalyst nanoparticles synthesized by solution process: towards efficient carbon nanotube growth vol.73, pp.2, 2015, https://doi.org/10.1007/s10971-014-3600-5
  7. A hydrogen peroxide biosensor based on multiwalled carbon nanotubes-polyvinyl butyral film modified electrode vol.52, pp.2, 2016, https://doi.org/10.1134/S1023193516020051
  8. Functional composition and electrochemical characteristics of oxidized nanosized carbon vol.58, pp.6, 2017, https://doi.org/10.1134/S0022476617060178
  9. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance vol.23, pp.30, 2012, https://doi.org/10.1088/0957-4484/23/30/305401
  10. Development of High Performance Electrochemical Capacitor: A Systematic Review of Electrode Fabrication Technique Based on Different Carbon Materials vol.2, pp.10, 2013, https://doi.org/10.1149/2.014310jss
  11. Nanoarchitectures for Mesoporous Metals vol.28, pp.6, 2016, https://doi.org/10.1002/adma.201502593
  12. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors vol.7, pp.4, 2010, https://doi.org/10.1088/2043-6262/7/4/045016
  13. Printable Ta Substrate with High Stability and Enhanced Interface Adhesion for Flexible Supercapacitor Performance Improvement vol.4, pp.9, 2010, https://doi.org/10.1002/admt.201900338
  14. Redox Processes in Reduced Graphite Oxide Decorated by Carboxyl Functional Groups vol.256, pp.9, 2019, https://doi.org/10.1002/pssb.201800700