DOI QR코드

DOI QR Code

Microwave Sol-Gel Derived NaGd(MoO4)2:Ho3+/Yb3+ Phosphors and Their Upconversion Photoluminescence Properties

  • Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2016.02.15
  • Accepted : 2017.07.26
  • Published : 2017.12.25

Abstract

Double molybdate $NaGd_{1-x}(MoO_4)_2:Ho^{3+}/Yb^{3+}$ phosphors with proper doping concentrations of $Ho^{3+}$ and $Yb^{3+}$ ($x=Ho^{3+}+Yb^{3+}$, $Ho^{3+}=0$ and 0.05, and $Yb^{3+}=0$, 0.35, 0.40, 0.45, and 0.50) were successfully synthesized using the microwave sol-gel method. Well-crystallized particles formed after heat-treatment at $800^{\circ}C$ for 16 h showed fine and homogeneous morphologies with particle sizes of $1{\sim}3{\mu}m$. The spectroscopic properties were examined using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the upconversion doped samples exhibited strong yellow emissions, from the combination of strong emission bands at 545 nm and 655 nm in the green and red spectral regions, respectively. The strong 545 nm emission band in the green region corresponded to the $^5S_2/^5F_4{\rightarrow}^5I_8$ transition in the $Ho^{3+}$ ions, while the strong 655 nm band in the red region appeared because of the $^5F_5{\rightarrow}^5I_8$ transition in the $Ho^{3+}$ ions. The pump power dependence and the Commission Internationale de L'Eclairage chromaticity of the upconversion emission intensity were evaluated in detail.

Keywords

References

  1. M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, Anal. Chim. Acta, 832, 1 (2014). [DOI: https://doi.org/10.1016/j.aca.2014.04.030]
  2. M. Lin, Y. Zho, S. Q. Wang, M, Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, Biotechnol. Adv., 30, 1551 (2012). [DOI: https://doi.org/10.1016/j.biotechadv.2012.04.009]
  3. M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, Nanomed.: Nanotech. Biol. Med., 7, 710 (2011). https://doi.org/10.1016/j.nano.2011.02.013
  4. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, and V. Atuchin, Phys. Chem. Chem. Phys., 17, 19278 (2015). [DOI: https://doi.org/10.1039/C5CP03054D]
  5. C. S. Lim, Mater. Res. Bull., 75, 211 (2016). [DOI: https://doi.org/10.1016/j.materresbull.2015.11.058]
  6. L. Li, L. Liu, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou, and X. Xu, J. Lumin., 143, 14 (2013). [DOI: https://doi.org/10.1016/j.jlumin.2013.04.031]
  7. C. Ming, F. Song, and L. Yan, Opt. Commun., 286, 217 (2013). [DOI: https://doi.org/10.1016/j.optcom.2012.08.095]
  8. N. Xue, X. Fan, Z. Wang, and M. Wang, J. Phys. Chem. Sol., 69, 1891 (2008). [DOI: https://doi.org/10.1016/j.jpcs.2008.01.015]
  9. Z. Shan, D. Chen, Y. Yu, P. Huang, F. Weng, H. Lin, and Y. Wang, Mater. Res. Bull., 45, 1017 (2010). [DOI: https://doi.org/10.1016/j.materresbull.2010.04.004]
  10. W. Liu, J. Sun, X. Li, J. Zhang, Y. Tian, S. Fu, H. Zhong, T. Liu, L. Cheng, H. Zhong, H. Xia, B. Dong, R. Hua, X. Zhang, and B. Chen, Opt. Mater., 35, 1487 (2013). [DOI: https://doi.org/10.1016/j.optmat.2013.03.008]
  11. W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, Sensors and Act. B: Chem., 188, 1096 (2013). [DOI: https://doi.org/10.1016/j.snb.2013.07.094]
  12. J. Tang, C. Cheng, Y. Chen, and Y. Huang, J. Alloys Compd., 609, 268 (2014). [DOI: https://doi.org/10.1016/j.jallcom.2014.04.134]
  13. W. Zhang, J. Li, Y. Wang, J. Long, and K. Qiu, J. Alloys Compd., 635, 16 (2015). [DOI: https://doi.org/10.1016/j.jallcom.2015.02.106]
  14. F. Mo, L. Zhou, Q. Pang, F. Gong, and Z. Liang, Ceram. Inter., 38, 6289 (2012). [DOI: https://doi.org/10.1016/j.ceramint.2012.04.084]
  15. G. Li, S. Lan, L. Li, M. Li, W. Bao, H. Zou, X. Xu, and S. Gan, J. Alloys Compd., 513, 145 (2012). [DOI: https://doi.org/10.1016/j.jallcom.2011.10.008]
  16. J. Liao, H. Huang, H. You, X. Qiu, Y. Li, B. Qiu, and H. R. Wen, Mater. Res. Bull., 45, 1145 (2010). [DOI: https://doi.org/10.1016/j.materresbull.2010.05.027]
  17. F. B. Cao, L. S. Li, Y. W. Tian, and X. R. Wu, Optics Laser Tech., 55, 6 (2014). [DOI: https://doi.org/10.1016/j.optlastec.2013.06.016]
  18. G. M. Kuz'micheva, D. A. Lis, K. A. Subbotin, V. B. Rybakov, and E. V. Zharikov, J. Crys. Growth, 275, e1835 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.257
  19. X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, J. Alloys Compd., 458, 462 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2007.04.010]
  20. X. Li, Z. Lin, L. Zhang, and G. Wang, J. Crys. Growth, 290, 670 (2006). [DOI: https://doi.org/10.1016/j.jcrysgro.2006.02.005]
  21. Y. K. Voron'ko, K. A. Subbotin, V. E. Shukshin, D. A. Lis, S. N. Ushakov, A. V. Popov, and E. V. Zharikov, Opt. Mater., 29, 246 (2009).
  22. H. Lin, X. Yan, and X. Wang, J. Sol. State. Chem., 204, 266 (2013). [DOI: https://doi.org/10.1016/j.jssc.2013.06.020]
  23. G. Li, L. Li, M. Li, W. Bao, Y. Song, S. Gan, H. Zou, and X. Xu, J. Alloys Compd., 550, 1 (2013). [DOI: https://doi.org/10.1016/j.jallcom.2012.09.125]
  24. Y. Huang, L. Zhou, L. Yang, and Z. Tang, Opt. Mater., 33, 777 (2011). [DOI: https://doi.org/10.1016/j.optmat.2010.12.015]
  25. L. Li, W. Zi, G. Li, S. Lan, G. Ji, S. Gan, H. Zou, and X. Xu, J. Sol. State Chem., 191, 175 (2012). [DOI: https://doi.org/10.1016/j.jssc.2012.03.003]
  26. Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng, and R. Hua, Physica B., 407, 2556 (2012). [DOI: https://doi.org/10.1016/j.physb.2012.03.066]
  27. J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu, and L. Peng, Inorg. Chem. Commun., 14, 1723 (2011). [DOI: https://doi.org/10.1016/j.inoche.2011.07.015]
  28. S. W. Park, B. K. Moon, B. C. Choi, J. H. Jeong, J. S. Bae, and K. H. Kim, Curr. Appl. Phys., 12, S150 (2012). https://doi.org/10.1016/j.cap.2012.02.048
  29. C. S. Lim, Mater. Res. Bull., 47, 4220 (2012). [DOI: https://doi.org/10.1016/j.materresbull.2012.09.029]
  30. C. S. Lim, Mater. Chem. Phys., 131, 714 (2012). [DOI: https://doi.org/10.1016/j.matchemphys.2011.10.039]
  31. C. S. Lim, Infrar. Phys. Tech., 67, 371 (2014). [DOI: https://doi.org/10.1016/j.infrared.2014.08.018]
  32. R. D. Shanan, Acta Cryst., A32, 751 (1976).
  33. F. Anzel, G. Baldacchini, L. Laversenne, and G. Boulon, Opt. Mat., 24, 103 (2003). [DOI: https://doi.org/10.1016/S0925-3467(03)00112-5]
  34. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, J. Phys. Chem. B, 108, 19205 (2004). [DOI: https://doi.org/10.1021/jp048072q]
  35. H. Du, Y. Lan, Z. Xia, and J. Sun, Mater Res. Bull., 44, 1660 (2009). [DOI: https://doi.org/10.1016/j.materresbull.2009.04.009]
  36. W. Lu, L. Cheng, J. Sun, H. Zhong, X. Li, Y. Tian, J. Wan, Y. Zheng, L. Huang, T. Yu, H. Yu, and B. Chen, Physica B, 405, 3284 (2010). [DOI: https://doi.org/10.1016/j.physb.2010.04.061]
  37. C. S. Lim, Ceram. Inter., 41, 2616 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.06.052]
  38. C. S. Lim, J. Phys. Chem. Sol., 76, 65 (2015).
  39. A. M. Abakumov, V. A. Morozov, A. A. Tsirlin, J. Verbeeck, and J. Hadermann, Inorg. Chem., 53, 9407 (2014). [DOI: https://doi.org/10.1021/ic5015412]
  40. V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, Chem. Mat., 25, 4387 (2013). [DOI: https://doi.org/10.1021/cm402729r]
  41. V. A. Morozov, A. V. Mironov, B. I. Lazoryak. E. G. Khaikina, O. M. Basovich, M. D. Rossell, and G. V. Tendeloo, J. Solid State Chem., 179, 1183 (2006). [DOI: https://doi.org/10.1016/j.jssc.2005.12.041]
  42. C. S. Lim, V. V. Atuchin, A. S. Aleksandrovsky, M. S. Molokeev, and A. S. Oreshonkov, J. Alloys Compd., 695, 737 (2017). [DOI: https://doi.org/10.1016/j.jallcom. 2016.06.134]