• Title/Summary/Keyword: RNT distribution

Search Result 9, Processing Time 0.019 seconds

THE MOMENTS OF THE RIESZ-NǺGY-TAKǺCS DISTRIBUTION OVER A GENERAL INTERVAL

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.187-193
    • /
    • 2010
  • In this paper, the moments of the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs(RNT) distribution over a general interval [a, b] $\subset$ [0, 1], are found through the moments of the RNT distribution over the unit interval, [0, 1]. This is done using some special features of the distribution and the fact that [0, 1] is a self-similar set in a dynamical system generated by the RNT distribution. The results are important for the study of the orthogonal polynomials with respect to the RNT distribution over a general interval.

DERIVATIVE OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.261-275
    • /
    • 2011
  • We give characterizations of the differentiability points and the non-differentiability points of the Riesz-N$\'{a}$gy-Tak$\'{a}$cs(RNT) singulr function using the distribution sets in the unit interval. Using characterizations, we show that the Hausdorff dimension of the non-differentiability points of the RNT singular function is greater than 0 and the packing dimension of the infinite derivative points of the RNT singular function is less than 1. Further the RNT singular function is nowhere differentiable in the sense of topological magnitude, which leads to that the packing dimension of the non-differentiability points of the RNT singular function is 1. Finally we show that our characterizations generalize a recent result from the ($\tau$, $\tau$ - 1)-expansion associated with the RNT singular function adding a new result for a sufficient condition for the non-differentiability points.

SUFFICIENT CONDITION FOR THE DIFFERENTIABILITY OF THE RIESZ-NÁGY-TAKÁCS SINGULAR FUNCTION

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1173-1183
    • /
    • 2017
  • We give some sufficient conditions for the null and infinite derivatives of the $Riesz-N{\acute{a}}gy-Tak{\acute{a}}cs$ (RNT) singular function. Using these conditions, we show that the Hausdorff dimension of the set of the infinite derivative points of the RNT singular function coincides with its packing dimension which is positive and less than 1 while the Hausdorff dimension of the non-differentiability set of the RNT singular function does not coincide with its packing dimension 1.

SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.7-21
    • /
    • 2015
  • We give the characterization of H$\ddot{o}$lder differentiability points and non-differentiability points of the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) singular function ${\Psi}_{a,p}$ satisfying ${\Psi}_{a,p}(a)=p$. It generalizes recent multifractal and metric number theoretical results associated with the RNT function. Besides, we classify the singular functions using the singularity order deduced from the H$\ddot{o}$lder derivative giving the information that a strictly increasing smooth function having a positive derivative Lebesgue almost everywhere has the singularity order 1 and the RNT function ${\Psi}_{a,p}$ has the singularity order $g(a,p)=\frac{a{\log}p+(1-a){\log}(1-p)}{a{\log}a+(1-a){\log}(1-a)}{\geq}1$.

Analysis of Spatial Coincidence of Thrips and Orius sauteri on Greenhouse Eggplants (하우스가지에서 애꽃노린재 Orius sauteri Poppius를 이용한 총채벌레류 방제 및 두 개체군의 공간분포와 공존분석)

  • 송정흡;김수남;이광석;한원탁
    • Korean journal of applied entomology
    • /
    • v.41 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • Biological control of thrips with a predatory bug species, Orius sauteri Poppius, was evaluated in an eggplant greenhouse, To study the biological control strategy of thrips. three Plots were established: Orius sauteri released plot without pesticide treatment (NRT), pesticide treated plot (PAT), and natural enemy removed plot (RNT) The nymphs of O. sauteri were found on the upper side of leaves in NRT at 21 days after the first release of O. sauteri. The density of thrips were dropped and maintained at lower level in NRT than in RNT. Average damage index of NRT, PAT and RNT was 1.35, 1.21 and 2.90 and the percentage of damaged fruit ratio of those was 70.3, 68.6 and 99.0%, respectively. The damage index and percentage of damaged fruit in NRT were slightly higher than those of PAT, but much lower than in RNT. Taylor's band Iwao's $\beta$ were greater than 1 for both populations. indicating aggregated distribution. Spatial coincidence index of O. sauteri was high most of the time even at low densities of both populations. The refuge index for thrips decreased as O. sauteri density increased. Results of this study suggest that O. sauteri is a promising natural enemy for thrips control on eggplant.

DECOMPOSITION OF THE RANDOM VARIABLE WHOSE DISTRIBUTION IS THE RIESZ-NÁGY-TAKÁCS DISTRIBUTION

  • Baek, In Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.421-426
    • /
    • 2013
  • We give a series of discrete random variables which converges to a random variable whose distribution function is the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) distribution. We show this using the correspondence theorem that if the moments coincide then their corresponding distribution functions also coincide.

칸토르와 관련된 주제를 활용한 고등학교 수학영재 교육방안

  • Baek, In-Soo
    • East Asian mathematical journal
    • /
    • v.25 no.3
    • /
    • pp.229-245
    • /
    • 2009
  • G. Cantor gave a deep influence to the society of mathematics in many ways, especially in the set theory. It is important for gifted and talented high school students in mathematics to understand the Euler constant and the fractal dimension of the Cantor set in a heuristic sense. On the historic basis of mathematics and the standard of high school students, we give the teaching method for the talented high school student to understand them better. Further we introduce the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs distribution and its first moment. We hope that from these topics, the gifted and talented students in mathematics will have insight in the analysis of mathematics.