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SINGULARITY ORDER OF

THE RIESZ-NÁGY-TAKÁCS FUNCTION

In-Soo Baek

Abstract. We give the characterization of Hölder differentiability points
and non-differentiability points of the Riesz-Nágy-Takács (RNT) singular
function Ψa,p satisfying Ψa,p(a) = p. It generalizes recent multifractal
and metric number theoretical results associated with the RNT function.
Besides, we classify the singular functions using the singularity order de-
duced from the Hölder derivative giving the information that a strictly
increasing smooth function having a positive derivative Lebesgue almost
everywhere has the singularity order 1 and the RNT function Ψa,p has

the singularity order g(a, p) =
a log p+(1−a) log(1−p)
a log a+(1−a) log(1−a)

≥ 1.

1. Introduction

Recently many ([8, 9, 10, 16]) studied the Cantor function, a singular func-
tion which is not strictly increasing and the Minkowski’s Question Mark func-
tion which is a strictly increasing singular function. Also J. Parad́ıs et al. ([17])
studied some conditions of the null and infinite derivatives of the RNT strictly
increasing singular function using metric number theory.

Recently we ([4]) also studied multifractal characterization of the null and
infinite derivative sets and the non-differentiability set of the RNT singular
function, which is the typical singular function related to mutifractal theory.
In this paper, we employ the Hölder derivative, which is a generalized form of
the usual derivative, of the RNT function on the unit interval. This definition
extends the concept of the singularity to the general singularity for a strictly
increasing continuous function. For every point in the unit interval, we ([4])
can give some code or dyadic expansion using digit 0 and 1, generating the
distribution set determined by the frequency of the zero in its expansion. The
distribution sets in the unit interval are the local dimension sets by a self-similar
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This research was supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and
Technology(NRF-2010-0007227).

c©2015 Korean Mathematical Society

7



8 IN-SOO BAEK

measure on the unit interval ([2]). We note that the Hausdorff and packing
dimensions of the local dimension sets in the unit interval were obtained in [2]
by the cylinder density theorem ([7, 13]) instead of the usual density theorem
([11]).

Using the information of the distribution sets and the local dimension sets,
we give the multifractal characterization of the Hölder derivative sets of Hölder
order 0 < q < ∞ and the Hölder non-differentiability set of Hölder order
0 < q < ∞ of the RNT singular function. As a result, the RNT singular
function is Hölder differentiable only on a meager subset ([14]) of the unit
interval. Further the Hausdorff dimension of the Hölder non-differentiability set
of the RNT singular function is greater than 0 whereas its packing dimension is
1. Further, for some Hölder order, the packing dimension of the infinite Hölder
derivative set of the RNT singular function is less than 1, giving full Lebesgue
measure for the null Hölder derivative set, and vice versa. That is, the packing
dimension of the null Hölder derivative set of the RNT singular function is less
than 1, giving full Lebesgue measure for the infinite Hölder derivative set for
some different Hölder order.

The RNT function Ψa,p ([17]) is generated by two positive numbers a, p ∈
(0, 1) respectively which give the slope equation

(
p

aq
)r(

1− p

(1− a)q
)1−r = 1

of r with respect to 0 < q < ∞. Further a is the critical point of the solution
r = r(q) for the slope equation for the Hölder derivative sets of Hölder order q
to have full Lebesgue measure, leading to the definition of the singularity order
for an increasing continuous function.

We note that the multifractal characterization for the particular Hölder or-
der, namely q = 1, is a generalization of recent results ([4, 17]) for the RNT
singular function.

We define the singularity order for a strictly increasing function on the unit
interval using the Hölder orders whose the null Hölder derivative set has full
Lebesgue measure and the infinite Hölder derivative set has full Lebesgue mea-
sure. Finally we show that the RNT function Ψa,p has the singularity order

g(a, p) = a log p+(1−a) log(1−p)
a log a+(1−a) log(1−a) ≥ 1.

2. Preliminaries

We ([2, 4]) recall the unit interval (0, 1] having the generalized dyadic ex-
pansion with a base a where 0 < a < 1. Let N be the set of the positive
integers. We define a fundamental interval Ii1···ik = fi1 ◦ · · · ◦ fik(I) where
f0(x) = ax and f1(x) = (1 − a)x + a on I = (0, 1], ij ∈ {0, 1} and 1 ≤ j ≤ k.
If x ∈ (0, 1], then there is a unique code σ ∈ {0, 1}N such that

⋂∞
k=1 Iσ|k = {x}

(Here σ|k = i1i2 · · · ik where σ = i1i2 · · · ikik+1 · · · ). We ([4]) called a code
σ ∈ {0, 1}N where

⋂∞
k=1 Iσ|k = {x} the generalized dyadic expansion with a

base a of x and identify x with the code σ without confusion.
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If x ∈ (0, 1] and x ∈ Iν where ν ∈ {0, 1}k, a cylinder ck(x) denotes the
fundamental interval Iν and |ck(x)| denotes the diameter of ck(x) for each
k = 0, 1, 2, . . ..

Given 0 < a, p < 1 and x ∈ (0, 1], the Riesz-Nágy-Takács (RNT) function
Ψa,p ([17]) satisfies

Ψa,p(x) =

∞∑

j=1

(1/p− 1)j−1

1/paj

for

x =

∞∑

j=1

(1/a− 1)j−1

1/aaj

with integers 1 ≤ a1 < a2 < · · · < an < · · · . If a = p, then the RNT function is
the identity function. We note that J. Parad́ıs et al. used the non-terminating
expansion and the above x can be represented by

x =

a1−1
︷ ︸︸ ︷

0 · · · 0 1

a2−a1−1
︷ ︸︸ ︷

0 · · · 0 1 · · ·

an−an−1−1
︷ ︸︸ ︷

0 · · · 0 1 · · · .

We note that their expression for x ∈ (0, 1] is exactly the same as its corre-
sponding code essentially.

From now on dim(E) denotes the Hausdorff dimension of E and Dim(E)
denotes the packing dimension of E ([11]). We note that dim(E) ≤ Dim(E)
for every set E ([11]). We denote n0(x|k) the number of times the digit 0 occurs
in the first k places of x = σ (cf. [1]).

For r ∈ [0, 1], we define the lower(upper) distribution set F (r)(F (r)) con-
taining the digit 0 in proportion r by

F (r) = {x ∈ (0, 1] : lim inf
k→∞

n0(x|k)

k
= r},

F (r) = {x ∈ (0, 1] : lim sup
k→∞

n0(x|k)

k
= r}.

We write F (r)∩F (r) = F (r) and call it the distribution set containing the digit
0 in proportion r. Let p ∈ (0, 1) and denote γp a self-similar Borel probability

measure on (0, 1] satisfying γp(I0) = p (cf. [1, 11]). We write E(p)
α (E

(p)

α ) for
the set of points at which the lower(upper) local cylinder density of γp on (0, 1]
is exactly α, so that

E(p)
α = {x ∈ (0, 1] : lim inf

k→∞

log γp(ck(x))

log |ck(x)|
= α},

E
(p)

α = {x ∈ (0, 1] : lim sup
k→∞

log γp(ck(x))

log |ck(x)|
= α}.

We write E(p)
α ∩ E

(p)

α = E
(p)
α and call it the local dimension set having lo-

cal dimension α by a self-similar measure γp. In this paper, we assume that
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0 log 0 = 0 for convenience. We introduce the relation between the distribution
sets and the local dimension sets, which is an essential result from [1].

Proposition 2.1 ([4]). Let p ∈ (0, 1), r ∈ [0, 1] and

g(r, p) =
r log p+ (1− r) log(1− p)

r log a+ (1− r) log(1− a)
.

Then

(1) F (r) = E
(p)
g(r,p) if 0 < p < a,

(2) F (r) = E
(p)

g(r,p) if a < p < 1,

(3) F (r) = E
(p)

g(r,p) if 0 < p < a,

(4) F (r) = E
(p)
g(r,p) if a < p < 1.

From now on, we will continue to use g(r, p) as above. To study the multi-
fractal spectra of the derivative sets and the set of non-differentiability points,
the following proposition is necessary. The results can be obtained easily from
[1, 2, 5, 15].

Proposition 2.2 ([3]). For 0 < s < 1,

(1) dim([∪s<r≤1F (r)] ∩ [∪0≤r<sF (r)]) = g(s, s),

(2) Dim([∪s<r≤1F (r)] ∩ [∪0≤r<sF (r)]) = 1.

For a ≤ s ≤ 1,

(3) dim(∪s≤r≤1F (r)) = Dim(∪s≤r≤1F (r)) = g(s, s).

For 0 ≤ s ≤ a,

(4) dim(∪0≤r≤sF (r)) = Dim(∪0≤r≤sF (r)) = g(s, s).

For s 6= a,

(5) dim(F (s)) = Dim(F (s)) = g(s, s) < 1,

while

(6) dim(F (a)) = Dim(F (a)) = 1.

3. Characterization of the Hölder derivative sets and the Hölder

non-differentiability set

We define the Hölder derivative Dqf(x) of a real valued function f at x ∈
(0, 1] of Hölder order 0 < q < ∞ by

Dqf(x) = lim
h→0

f(x+ h)− f(x)

hq
,

where hq = sgn(h)|h|q, if it exists in [−∞,∞]. We remark that this definition
is the same as that of [12]. We note that Dqf(x) = f ′(x) for q = 1. Since we
include the infinite values in its derivative, we sometimes use the terminology
that Dqf(x) exists in a wide sense (cf. [17]).
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The following proposition is a general theorem related to the Vitali covering
lemma ([18]) for the Hölder differentiability of the increasing function.

Proposition 3.1. Let f be an increasing real valued function on the unit in-

terval (0, 1]. Then Dqf(x) of f at x of Hölder order 0 < q < ∞ exists in a

wide sense almost everywhere. In particular, for q = 1, 0 ≤ Dqf(x) < ∞.

Proof. It follows from the similar arguments of the proof of Theorem 3 in the
section 5 of [18]. For this, it is only necessary to change small intervals [x−h, x]
and (y, y + k) into [x− hq, x] and (y, y + kq) using f(x)− f(x− h) < vhq and
f(y+k)−f(y) > ukq instead of using f(x)−f(x−h) < vh and f(y+k)−f(y) >
uk in the arguments of the proof. In particular, 0 ≤ f ′(x) < ∞ from Theorem
3 in the section 5 of [18]. �

Lemma 3.2. Let α and β be positive real numbers. Then for 0 < q < ∞,

(α + β)q ≤ 2q(αq + βq).

For 0 < q ≤ 1,

αq + βq ≤ 21−q(α+ β)q.

For 1 ≤ q < ∞,

αq + βq ≤ (α+ β)q .

Proof. Let α and β be positive real numbers. For 0 < q < ∞, (α+β
2 )q ≤ αq or

(α+β
2 )q ≤ βq since α+β

2 ≤ α or α+β
2 ≤ β. This gives (α + β)q ≤ 2q(αq + βq).

For 0 < q < 1, the concavity of the function y = xq gives (α+β
2 )q ≥ αq+βq

2 . For

1 < q < ∞, αq + βq ≤ (α + β)q follows from that
∫ α+β

α
y′dx ≥

∫ β

0
y′dx gives

(α+ β)q − αq ≥ βq where y = xq. �

The following lemma is a variation of Theorems 6 and 7 in [4] which are
useful for the study of the concrete examples of the differentiable points and
the non-differentiability points even though the proof of the theorems is rather
complicate. The proof of this lemma is simple even though this lemma can be
applied to all 0 < q < ∞.

Lemma 3.3. Let x be not an end point of the fundamental intervals cn(x).
For 0 < q < ∞, if 0 < Dqf(x) = l < ∞, then

(7) 0 < 2−ql ≤ lim inf
n→∞

γp(cn(x))

|cn(x)|q
≤ lim sup

n→∞

γp(cn(x))

|cn(x)|q
≤ 2l < ∞.

In particular, if 0 < f ′(x) = l < ∞, then

(8) 0 < lim
n→∞

γp(cn(x))

|cn(x)|
= l < ∞.

Consequently if Dqf(x) = ∞, then

(9) lim
n→∞

γp(cn(x))

|cn(x)|q
= ∞.



12 IN-SOO BAEK

Similarly if Dqf(x) = 0, then

(10) lim
n→∞

γp(cn(x))

|cn(x)|q
= 0.

Proof. We note that for 0 < q < ∞ and 0 < Dqf(x) = l < ∞,

0 < lim
y↑x

f(x)− f(y)

(x− y)q
= l = lim

z↓x

f(z)− f(x)

(z − x)q
= l < ∞.

Given ǫ > 0, there is δ > 0 such that x− δ < y < x < z < x+ δ satisfying

(l − ǫ)(x− y)q < f(x)− f(y) < (l + ǫ)(x− y)q

and

(l − ǫ)(z − x)q < f(z)− f(x) < (l + ǫ)(z − x)q .

From the above lemma, for the same ǫ and δ with x− δ < y < x < z < x+ δ,
we have

2−q(l − ǫ)(z − y)q < f(z)− f(y) < 2(l+ ǫ)(z − y)q,

which gives, for cn(x) = (yn, zn] therefore yn < x < zn since x is not an end
point of cn(x),

0 < 2−ql ≤ lim inf
n→∞

γp(cn(x))

|cn(x)|q
≤ lim sup

n→∞

γp(cn(x))

|cn(x)|q
≤ 2l < ∞.

In particular, for q=1, we have (l − ǫ)(z − y)q < f(z)− f(y) < (l + ǫ)(z − y)q,
which gives, for cn(x) = (yn, zn] therefore yn < x < zn since x is not an end
point of cn(x),

0 < l ≤ lim inf
n→∞

γp(cn(x))

|cn(x)|q
≤ lim sup

n→∞

γp(cn(x))

|cn(x)|q
≤ l < ∞.

The assertions for the values l = ∞ and l = 0 follow from the similar arguments
with the above ones. �

Remark 3.4. From now on, in this section, f will be used as the RNT singular
function Ψa,p in the preliminaries if there is no particular mention of f . In this

section, for simplicity, we fix 0 < a < p < 1. We consider q ∈ ( log p
log a ,

log(1−p)
log(1−a) )

without any particular mention. We note that the dual results hold for 0 <
p < a < 1, which are left as an exercise. Let N q = (0, 1] − (Dq

0 ∪ Dq
∞ ∪ Dq

1)
where

Dq
0 = {x ∈ (0, 1] : Dqf(x) = 0},

Dq
∞ = {x ∈ (0, 1] : Dqf(x) = ∞},

Dq
1 = {x ∈ (0, 1] : 0 < Dqf(x) < ∞}.

Then N q is the set of the points x at which the derivatives Dqf(x) of f do
not exist. We note that if x is an end point of the fundamental intervals cn(x),
then Dqf(x) does not exist for every 0 < q < 1, therefore x ∈ N q. This
means that we can apply (7)-(10) of the above lemma to the relation between
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Dq
0, D

q
1, D

q
∞ and the local dimension set. From now on, we will continue to use

Dq
0, D

q
1, D

q
∞, N q as above.

The following proposition and remark were shown already in [4], but we
introduce them for the comparison with the next proposition.

Proposition 3.5 ([4]). For x ∈ (0, 1] at which f ′(x) exists and 0 < f ′(x) < ∞,

lim
n→∞

log γp(cn(x))

log |cn(x)|
= 1.

Remark 3.6 ([4]). From the above proposition, D1
1 ⊂ E

(p)
1 . Now, E

(p)
1 = F (s)

for some s from (2) and (4) of Proposition 2.1. Then s 6= a. For, if s = a, then
g(a, p) 6= 1 giving a contradiction. Hence the Hausdorff and packing dimension

of E
(p)
1 is less than 1 from (5), which implies D1

1 has null Lebesgue measure.
Further, from (8), we see that

D1
1 ⊂ {x ∈ (0, 1] : 0 < lim

n→∞

γp(cn(x))

|cn(x)|
< ∞}.

P. Billingsley ([6]) showed that {x ∈ (0, 1] : 0 < limn→∞
γp(cn(x))
|cn(x)|

< ∞} = φ

using the fact that

lim
n→∞

|
γp(cn+1(x))

γp(cn(x))
−

|cn+1(x)|

|cn(x)|
| = 0

for x ∈ {x ∈ (0, 1] : 0 < limn→∞
γp(cn(x))
|cn(x)|

< ∞} whereas

|
γp(cn+1(x))

γp(cn(x))
−

|cn+1(x)|

|cn(x)|
| = |p− a| 6= 0,

which implies that D1
1 = φ. This together with Proposition 3.1 gives that f is

a singular function. However this can be shown also from Corollary 3.13.

Unlike q = 1, we cannot argue that Dq
1 = φ for q 6= 1. However the set

having the essential property of Dq
1 is empty.

Proposition 3.7. For q ∈ ( log p
log a ,

log(1−p)
log(1−a) ),

{x ∈ (0, 1] : 0 < lim
n→∞

γp(cn(x))

|cn(x)|q
< ∞} = φ.

Proof. If there is an x ∈ (0, 1] such that 0 < limn→∞
γp(cn(x))
|cn(x)|q

= l < ∞, then

lim
n→∞

|
γp(cn+1(x))

γp(cn(x))
−

l|cn+1(x)|
q

l|cn(x)|q
| = 0.

However

|
γp(cn+1(x))

γp(cn(x))
−

l|cn+1(x)|
q

l|cn(x)|q
| =







|p− aq| 6= 0

or

|(1− p)− (1− a)q| 6= 0
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since p 6= aq ⇔ q 6= log p
log a , and 1− p 6= (1− a)q ⇔ q 6= log(1−p)

log(1−a) . �

Remark 3.8. By the above remark, we see that N1 = (0, 1] − (D1
0 ∪ D1

∞).
However we cannot guarantee that N q = (0, 1] − (Dq

0 ∪ Dq
∞) since we cannot

assure that Dq
1 = φ for q(6= 1) ∈ ( log p

log a ,
log(1−p)
log(1−a) ).

We define r(q) by the solution r of the equation g(r, p) = q. We note that
the function g(r, p) is a strictly decreasing function for r ∈ [0, 1] having its

range [g(1, p), g(0, p)] = [ log p
log a ,

log(1−p)
log(1−a) ] from 0 < a < p < 1. We note that

0 < a < r(1) < 1.

Theorem 3.9. For q ∈ ( log p
log a ,

log(1−p)
log(1−a) ), we have

(11) [∪r(q)<r≤1F (r)] ∩ [∪0≤r<r(q)F (r)] ⊂ N q.

For q ∈ ( log p
log a ,

log(1−p)
log(1−a)), we have

(12) ∪0≤r≤r(q)F (r) − F (r(q)) ⊂ Dq
0 ∪N q,

(13) ∪r(q)≤r≤1F (r) − F (r(q)) ⊂ Dq
∞ ∪N q,

further

(14) Dq
0 ⊂ ∪0≤r≤r(q)F (r),

(15) Dq
∞ ⊂ ∪r(q)≤r≤1F (r),

(16) Dq
1 ⊂ F (r(q)).

Proof. For (12), if x ∈ ∪0≤r≤r(q)F (r)−F (r(q)), then x ∈ ∪0≤r<r(q)F (r). There-
fore

x ∈ ∪0≤r<r(q)E
(p)

g(r,p).

That is, lim supn→∞
log γp(cn(x))
log |cn(x)|

= g(r, p) > q = g(r(q), p) since g(r, p) is a

strictly decreasing function for r. This gives lim supn→∞
log γp(cn(x))
log |cn(x)|q

> 1. This

implies that lim infn→∞
γp(cn(x))
|cn(x)|q

= 0. From (9), we see that x 6∈ Dq
∞, which

means x ∈ Dq
0 ∪ N q ∪ Dq

1. Assume that x ∈ Dq
1. Then a contradiction arises

from (7) also. So x ∈ Dq
0 ∪N q.

For (13), if x ∈ ∪r(q)≤r≤1F (r) − F (r(q)), then lim infn→∞
log γp(cn(x))
log |cn(x)|q

< 1.

This implies that lim supn→∞
γp(cn(x))
|cn(x)|q

= ∞, which means x ∈ Dq
∞ ∪N q from

the similar arguments above with (10) and (7).
For (11), if x ∈ [∪r(q)<r≤1F (r)]∩ [∪0≤r<r(q)F (r)], then from the same argu-

ments above,

0 = lim inf
n→∞

γp(cn(x))

|cn(x)|q
< lim sup

n→∞

γp(cn(x))

|cn(x)|q
= ∞.

From (9) and (10), x 6∈ Dq
0 ∪Dq

∞. Further we also see that x 6∈ Dq
1 from (7).
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For (14), assume that x ∈ Dq
0. Then from (10),

x 6∈ [[∪r(q)<r≤1F (r)] ∩ [∪0≤r<r(q)F (r)]] ∪ [∪r(q)≤r≤1F (r) − F (r(q))],

which implies x ∈ ∪0≤r≤r(q)F (r). Similarly (15) holds.
For (16), since log function is a continuous increasing function, from (7)

log 2−qDqf(x) ≤ lim inf
n→∞

log
γp(cn(x))

|cn(x)|q
≤ lim sup

n→∞
log

γp(cn(x))

|cn(x)|q
≤ log 2Dqf(x),

which gives

lim
n→∞

log γp(cn(x)) − q log |cn(x)|

log |cn(x)|
= 0,

from 0 < Dqf(x) < ∞. This means that Dq
1 ⊂ E

(p)
q . From Proposition 2.1(2)

and (4), E
(p)
q = F (r(q)). �

Corollary 3.10. For q ∈ ( log p
log a ,

log(1−p)
log(1−a) ), we have

0 < g(r(q), r(q)) ≤ dim(N q) ≤ Dim(N q) = 1.

In particular, if r(q) = a, then dim(N q) = Dim(N q) = 1.

Proof. It follows from (11) with (1) and (2). �

Remark 3.11. Since F (0)∩F (1)(⊂ N q) is comeager in (0, 1] ([4, 14]), the RNT
singular function is nowhere Hölder differentiable in the sense of topological

magnitude for q ∈ ( log p
log a ,

log(1−p)
log(1−a) ). We note that if x is an end point of a

fundamental interval, then x ∈ F (0) ⊂ F (0) and x ∈ N q for 0 < q < ∞.

Corollary 3.12. Let 0 < r(q) < 1. Then, for r(q) 6= a,

dim(Dq
1) ≤ Dim(Dq

1) ≤ g(r(q), r(q)) < 1,

while, for r(q) = a,

dim(Dq
1) ≤ Dim(Dq

1) ≤ g(r(q), r(q)) = 1.

Proof. It is immediate from (16) with (5) and (6). �

Before going into the two corollaries, we note that Dq
0 ∪ Dq

1 ∪ Dq
∞ has full

Lebesgue measure from Proposition 3.1.

Corollary 3.13. Let a < r(q) < 1. Then

dim(Dq
∞) ≤ Dim(Dq

∞) ≤ g(r(q), r(q)) < 1,

therefore Dq
0 has full Lebesgue measure.

Proof. Let a < r(q) < 1. From (15) with (3),

dim(Dq
∞) ≤ Dim(Dq

∞) ≤ Dim(∪r(q)≤r≤1F (r)) = g(r(q), r(q)) < 1.

This means thatDq
∞ has null Lebesgue measure. Further, Dq

1 has null Lebesgue
measure from the above corollary. Hence Proposition 3.1 gives that Dq

0 has full
Lebesgue measure. �
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Corollary 3.14. Let 0 < r(q) < a. Then

dim(Dq
0) ≤ Dim(Dq

0) ≤ g(r(q), r(q)) < 1,

therefore Dq
∞ has full Lebesgue measure.

Proof. Let 0 < r(q) < a. From (14) with (4),

dim(Dq
0) ≤ Dim(Dq

0) ≤ Dim(∪0≤r≤r(q)F (r)) = g(r(q), r(q)) < 1.

This means that Dq
0 has null Lebesgue measure. Further, Dq

1 has null Lebesgue
measure from Corollary 3.12. Hence Proposition 3.1 gives that Dq

∞ has full
Lebesgue measure. �

Remark 3.15. We note that g(a, p) < q < g(0, p) ⇔ 0 < r(q) < a, and g(1, p) <
q < g(a, p) ⇔ a < r(q) < 1. Therefore g(a, p) is the critical point of q for
which one of Dq

0 and Dq
∞ has full Lebesgue measure. That is, Dq

0 has full
Lebesgue measure for 0 < q < g(a, p) while Dq

∞ has full Lebesgue measure for
g(a, p) < q < ∞. However, for q = g(a, p) ⇔ r(q) = a, we do not have any
information about which one of Dq

0, D
q
1, and Dq

∞ has full Lebesgue measure.

4. Application of the characterization to the metric number theory

In the above section, we used f for the RNT singular function, but in this
section we will use Ψa,p instead of f for comparison of our results with those
of [17]. J. Parad́ıs et al. ([17]) studied the RNT singular function Φα,τ (x) =
Ψa,p(x) where α = 1/a, τ = 1/p and gave a critical point to check the existence
of derivative of the singular function. In this section we assume that α = 1/a,

τ = 1/p. The critical point is K = K(α, τ) =
log(α−1

τ−1
)

log(α/τ) . It is not difficult to

show that K = 1
1−r(1) . Similarly for the metric number theoretical study with

respect to the Hölder derivative, we define Kq = 1
1−r(q) , where q is between

log p
log a and log(1−p)

log(1−a) . Then

Kq = Kq(α, τ) =
log( (α−1)q

τ−1 )

log(α(α−1)q−1

τ )
.

We easily see that Kq(α, τ) ≥ 1.

From now on, we assume that x =
∑∞

j=1
(α−1)j−1

αaj with positive integers aj
such that 1 ≤ a1 < a2 < · · · as in the preliminaries.

Lemma 4.1 ([4]). For an extended real number 1 ≤ A ≤ ∞ we have

(17) lim inf
n→∞

an
n

≥ A ⇔ lim inf
m→∞

n0(x|m)

m
≥ 1−

1

A
,

and

(18) lim sup
n→∞

an
n

≤ A ⇔ lim sup
m→∞

n0(x|m)

m
≤ 1−

1

A
.
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As was shown in [4], from the above lemma, we easily see that

(19) lim inf
m→∞

n0(x|m)

m
= 1−

1

lim infn→∞
an

n

and

(20) lim sup
m→∞

n0(x|m)

m
= 1−

1

lim supn→∞
an

n

.

As was shown in [4], the following theorem for the particular value q = 1 is a
generalization of Theorem 4.2 in [17] which is the main result of [17].

Theorem 4.2. If limn→∞
an

n 6= Kq, then we have:
(i) Case 1 < τ < α. If

lim sup
n→∞

an
n

≤ Kq,

then, if DqΨa,p(x) exists in a wide sense, it has to be 0. If

lim inf
n→∞

an
n

≥ Kq,

then, if DqΨa,p(x) exists in a wide sense, it has to be ∞.

(ii) Case τ > α > 1.

lim inf
n→∞

an
n

≥ Kq,

then, if DqΨa,p(x) exists in a wide sense, it has to be 0. If

lim sup
n→∞

an
n

≤ Kq,

then, if DqΨa,p(x) exists in a wide sense, it has to be ∞.

Proof. For Case 1 < τ < α(⇔ 0 < a < p < 1), assume that lim infn→∞
an

n ≥
Kq. (17) gives that

lim inf
m→∞

n0(x|m)

m
≥ 1−

1

Kq
= r(q),

which means

x ∈ ∪r(q)≤r≤1F (r).

Since limn→∞
an

n 6= Kq, we easily see that x 6∈ F (r(q)) from (17) and (18).
From (13): ∪r(q)≤r≤1F (r) − F (r(q)) ⊂ Dq

∞ ∪ N q for 0 < a < p < 1, we
immediately haveDqΨa,p(x) = ∞ ifDqΨa,p(x) exists in a wide sense. Similarly
the rest holds from the above lemma with (12). For Case 1 < τ < α, it follows
from the dual arguments for 0 < p < a < 1. �

The following theorem is the converse of the above theorem in some sense.

Theorem 4.3. We have:
(i) Case 1 < τ < α. If DqΨa,p(x) = 0, then

lim sup
n→∞

an
n

≤ Kq.
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If DqΨa,p(x) = ∞, then

lim inf
n→∞

an
n

≥ Kq.

(ii) Case τ > α > 1. If DqΨa,p(x) = 0, then

lim inf
n→∞

an
n

≥ Kq.

If DqΨa,p(x) = ∞, then

lim sup
n→∞

an
n

≤ Kq.

Proof. For Case 1 < τ < α, it follows from the above lemma with (14) and
(15). For Case τ > α > 1, it follows from the above lemma with the dual
results of (14) and (15) for 0 < p < a < 1. �

The following is a sufficient condition for the Hölder non-differentiability
points of the RNT singular function.

Theorem 4.4. If

lim inf
n→∞

an
n

< Kq < lim sup
n→∞

an
n
,

then DqΨa,p(x) does not exist.

Proof. From (17) and (18), if lim infn→∞
an

n < Kq < lim supn→∞
an

n , then we
easily see that

x ∈ [∪r(q)<r≤1F (r)] ∩ [∪0≤r<r(q)F (r)].

It follows from (11). �

As was shown in [4], the following theorem for q = 1 is also an essential
generalization of Theorem 4.1 in [17]. Noting that r(q) = 1 − 1

Kq
, we have

α(1 − 1
Kq

) > 1 ⇔ r(q) > a when 0 < a < p < 1. For α(1 − 1
Kq

) > 1, in

particular q = 1, it assures that DqΨa,p(x) = 0 for a normal point x ∈ Fa

where a = 1
α when DqΨa,p(x) exists in a wide sense.

Theorem 4.5. If limn→∞
an

n = α
α−1 , then

(1) for α(1 − 1
Kq

) > 1, if DqΨa,p(x) exists in a wide sense, DqΨa,p(x) = 0.

(2) for α(1− 1
Kq

) < 1, if DqΨa,p(x) exists in a wide sense, DqΨa,p(x) = ∞.

Proof. We note that α(1 − 1
Kq

) = αr(q). If limn→∞
an

n = α
α−1 , then x ∈ F ( 1

α )

from (19) and (20).
Let 0 < a < p < 1. Since F ( 1

α ) = F (a) ⊂ Dq
0 ∪ N q from (12) if a <

r(q) ⇔ αr(q) > 1, it follows. Since F ( 1
α ) = F (a) ⊂ Dq

∞ ∪ N q from (13) if
a > r(q) ⇔ αr(q) < 1, it follows. Dually it holds for 0 < p < a < 1, namely,
F ( 1

α ) = F (a) ⊂ Dq
0∪N

q if a > r(q) ⇔ αr(q) > 1, and F ( 1
α ) = F (a) ⊂ Dq

∞∪N q

if a < r(q) ⇔ αr(q) < 1. �
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5. Application of the characterization to the general singularity

In this section, we define a general singularity and its dual singularity for a
strictly increasing continuous function f having f(0) = 0 and f(1) = 1. We
clearly see that the RNT function f assuming f(0) = 0 and f(1) = 1 is a
strictly increasing continuous function on the unit interval [0,1]. We used the
concept of the singularity for a non-constant increasing continuous function
f whose derivative f ′(x) is zero for full Lebesgue measure or a.e.. Now it is
natural for us to extend its concept to the general case in the view of Corollaries
3.13 and 3.14. For 0 < q < ∞, we say that a strictly increasing continuous
function f on the unit interval is a singular function of order q if Dqf(x) = 0
for Lebesgue almost all point x. We exclude the singular function having
some constant part from our concern, for example the Cantor function, since
a non-strictly increasing singular function gives a degeneration case for some
meaningful definition. Further we also say that a strictly increasing continuous
function f on the unit interval is a dual singular function of order q if Dqf(x) =
∞ for Lebesgue almost all point x. We write Sq for the set of the singular
functions of order q and Tq for the set of the dual singular functions of order
q. Then we clearly see that for q1 ≥ q2

Sq1 ⊂ Sq2

and

Tq2 ⊂ Tq1 .

Further we also see that Sq ∩ Tq = φ for every q ∈ (0,∞).

Corollary 5.1. (i) Assume that 0 < a 6= p < 1. If 0 < q < g(a, p), then

Ψa,p ∈ Sq. If g(a, p) < q < ∞, then Ψa,p ∈ Tq. In particular, Ψa,p ∈ S1.

(ii) Assume that 0 < a = p < 1. If 0 < q < 1, then Ψa,p ∈ Sq. If 1 < q < ∞,

then Ψa,p ∈ Tq.

Proof. For 0 < a < p < 1, assume that 0 < q < g(a, p). Since g(1, p) <
q < g(a, p) ⇔ a < r(q) < 1 in Remark 5, Corollary 3.13 gives that the RNT
function Ψa,p is a singular function of order q. Clearly for 0 < q ≤ g(1, p), the
RNT function Ψa,p is a singular function of order q since Sq1 ⊂ Sq2 for q1 ≥ q2.

Assume that g(a, p) < q < ∞. Since g(a, p) < q < g(0, p) ⇔ 0 < r(q) < a,
in Remark 3.15, Corollary 3.14 gives that the RNT function Ψa,p is a dual
singular function of order q. Clearly for g(0, p) ≤ q < ∞, the RNT function
Ψa,p is a dual singular function of order q since Tq2 ⊂ Tq1 for q1 ≥ q2.

Dually it also holds for 0 < p < a < 1 from the exercise which was mentioned
in Remark 3.4.

In particular, if a 6= p, then 0 < 1 < g(a, p). Ψa,p ∈ S1 from the above.
For 0 < a = p < 1, Ψa,p is the identity function. It follows immediately

from the simple arguments which can be used to show Sq1 ⊂ Sq2 and Tq2 ⊂ Tq1

for q1 ≥ q2. �
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Proposition 5.2. For any strictly increasing continuous function f ,

0 ≤ sup{q ∈ (0,∞) : Dqf(x) = 0 a.e.}

≤ inf{q ∈ (0,∞) : Dqf(x) = ∞ a.e.} ≤ ∞.

Proof. Suppose that it does not hold. That is, we assume that

inf{q ∈ (0,∞) : Dqf(x) = ∞ a.e.} < sup{q ∈ (0,∞) : Dqf(x) = 0 a.e.}.

Then there are positive real numbers q1 < q2 between them and Dq1f(x) =
∞ a.e. and Dq2f(x) = 0 a.e., which gives a contradiction. �

For a strictly increasing function f on the unit interval, we define the lower

singularity order of f by

sup{q ∈ (0,∞) : Dqf(x) = 0 a.e.} = L(f),

and the upper singularity order of f by

inf{q ∈ (0,∞) : Dqf(x) = ∞ a.e.} = U(f).

If L(f) = U(f), we call such L(f)(= U(f)) the singularity order of f . The
following theorem shows that the RNT function Ψa,p has the singularity order
g(a, p).

Corollary 5.3. For the RNT function f = Ψa,p,

L(f) = g(a, p) = U(f).

Proof. It follows from the above corollary. �

Proposition 5.4. Let f be strictly increasing and f ′(x) exist in a wide sense

on the unit interval and f ′(x) > 0 a.e.. Then

L(f) = 1 = U(f).

Proof. Assume that f is a strictly increasing smooth function on the unit in-
terval and f ′(x) > 0 a.e.. Since f is an increasing function, 0 ≤ f ′(x) < ∞ a.e.
by Proposition 3.1. Hence 0 < f ′(x) < ∞ a.e., from which it follows easily. �
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