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DERIVATIVE OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

In-Soo Baek

Abstract. We give characterizations of the differentiability points and
the non-differentiability points of the Riesz-Nágy-Takács(RNT) singular

function using the distribution sets in the unit interval. Using characteri-
zations, we show that the Hausdorff dimension of the non-differentiability
points of the RNT singular function is greater than 0 and the packing di-

mension of the infinite derivative points of the RNT singular function is
less than 1. Further the RNT singular function is nowhere differentiable
in the sense of topological magnitude, which leads to that the packing di-
mension of the non-differentiability points of the RNT singular function

is 1. Finally we show that our characterizations generalize a recent result
from the (τ, τ − 1)-expansion associated with the RNT singular function
adding a new result for a sufficient condition for the non-differentiability
points.

1. Introduction

Recently many authors ([6, 7, 8]) studied non-differentiability and some char-
acterization of the non-differentiability set of a Cantor function. They used a
fractal method to find the characterization. The Cantor function is a singular
function, which is not strictly increasing. More recently J. Parad́ıs et al. ([14])
studied some conditions of the null and infinite derivatives of the RNT strictly
increasing singular function using their so-called (τ, τ − 1)-expansions of the
unit interval. In this paper, we also study the conditions of the null and infi-
nite derivatives of the singular function using a multifractal method which is
easier than the direct calculation of derivatives using (τ, τ − 1)-expansions of
the unit interval in some sense. Further our multifractal method gives more
information than the (τ, τ − 1)-expansion method.

We can express any point in (0, 1] as a code using the generalized dyadic
expansion with a positive real number base a ∈ (0, 1) ([2]). We define a strictly
increasing function f which corresponds each code with a base a to the same
code with a base p ∈ (0, 1). We call such a function f the base transformed
identical code function. In fact, the base transformed identical code function f
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is the RNT function. We show that 0 < f ′(x) < ∞ on a subset of Hausdorff
dimension less than 1 when p ̸= a, which leads to that the derivative f ′(x) at
almost every point x in the unit interval is 0. This means that when p ̸= a the
function f is a singular function.

The distribution sets in the unit interval are the local dimension sets by a
self-similar measure ([2]). We note that the Hausdorff and packing dimensions
of the local dimension sets in the unit interval were obtained in [2] by the
cylinder density theorem ([5, 11]) instead of the usual density theorem ([10]).
In fact, the local dimension set relates p with a in the RNT function f .

Using the information of the distribution sets and the local dimension sets,
we give some multifractal characterizations of the derivative sets and the non-
differentiability set of f . As a result, we see that the RNT singular function f
is differentiable only on a meager subset of the unit interval. Further the Haus-
dorff dimension of the non-differentiability set of the RNT singular function f
is greater 0 whereas its packing dimension is 1 and the packing dimension of
the infinite derivative set of the RNT singular function f is less than 1.

Finally we show that our multifractal characterization is a generalization of
a recent result ([14]) for the RNT singular function. Consequently our mul-
tifractal characterization gives surprisingly rich information about (τ, τ − 1)-
expansions associated with the RNT singular function. That is, the solution
r = r(1) of the equation ( pa )

r( 1−p
1−a )

1−r = 1 gives a bifurcation point for its null

and infinite derivative whereas for α = 1/a, τ = 1/p

K = K(α, τ) =
log(α−1

τ−1 )

log(α/τ)
(=

1

1− r(1)
)

with respect to the asymptotic behavior of an

n from the (τ, τ − 1)-expansion
gives a critical point for its derivative (see our Section 4 or [14]). Further
our application to the critical point K adds new facts of a sufficient condition
for the non-differentiability points of the RNT singular distribution and the
converse of the main theorem in [14].

2. Preliminaries

We (cf. [2]) define Fa the unit interval (0, 1] having the generalized dyadic
expansion with a base a where 0 < a < 1. Let N be the set of the positive
integers. We define a fundamental interval Ii1···ik = fi1 ◦ · · · ◦ fik(I) where
f0(x) = ax and f1(x) = (1 − a)x + a on I = (0, 1], ij ∈ {0, 1} and 1 ≤
j ≤ k. If x ∈ Fa = (0, 1], then there is a unique code σ ∈ {0, 1}N such that∩∞

k=1 Iσ|k = {x} (Here σ|k = i1i2 · · · ik where σ = i1i2 · · · ikik+1 · · · ). We call

a code σ ∈ {0, 1}N where
∩∞

k=1 Iσ|k = {x} the generalized dyadic expansion
with a base a of x and identify x with the code σ without confusion. We
write [σ](a) for the generalized dyadic expansion with a base a of x to avoid
some confusion. We use non-terminating expression for the end points of the
fundamental intervals whereas we used terminating expression for them in [2].
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In this sense, we can still use the results of [2] in our paper. In fact, we use
this non-terminating expression for the expansion to be compatible with the
(τ, τ − 1) expansion for the RNT function.

We note that F 1
2

is the unit interval (0, 1] having the dyadic expansion

(cf. [12]). If x ∈ Fa = (0, 1] and x ∈ Iσ′ where σ′ ∈ {0, 1}k, a cylinder ck(x)
denotes the fundamental interval Iσ′ and |ck(x)| denotes the diameter of ck(x)
for each k = 0, 1, 2, . . .. We define the base transformed identical code function

f : Fa → Fp

such that f([σ](a)) = [σ](p) where 0 < a, p < 1. More precisely, f carries
x(= [σ](a) ∈ (0, 1]) which has the generalized dyadic expansion σ with a base
a to y(= [σ](p) ∈ (0, 1]) which has the same code σ as its generalized dyadic
expansion with a base p. Then we easily see that it is a continuous strictly
increasing function from (0, 1] onto (0, 1]. If p = a, then the above function
f(x) is the identity function which is a trivial case for consideration. It is not
difficult to show that it is the Riesz-Nágy-Takács(RNT) function ([14]), that
is, f(x) = Φα,τ (x) where α = 1

a and τ = 1
p . Precisely, given α, τ > 1 and

x ∈ (0, 1],

Φα,τ (x) =
∞∑
j=1

(τ − 1)j−1

τaj

for

x =

∞∑
j=1

(α− 1)j−1

αaj

with integers 1 ≤ a1 < a2 < · · · < an < · · · . In this case, we note that
J. Parad́ıs et al. used a non-terminating expansion and the above x can be
represented in our code by

x =

a1−1︷ ︸︸ ︷
0 · · · 0 1

a2−a1−1︷ ︸︸ ︷
0 · · · 0 1 · · ·

an−an−1−1︷ ︸︸ ︷
0 · · · 0 1 · · · .

That is, aj means the j-th position of 1 in our code. For example, a =∑∞
j=1

(α−1)j−1

αj+1 and aj = j + 1 with a = 0111 · · · in our code. For another

example, if x =
∑∞

j=1
(α−1)j−1

α2j−1 , then aj = 2j − 1 with x = 101010 · · · in our

code. We note that their expression for x ∈ (0, 1] are exactly the same as our
codes essentially.

Remark 1. Let f : (0, 1] → (0, 1] be a strictly increasing function from (0, 1]
onto (0, 1]. Since every real valued increasing function has its derivative at
almost every point in (0, 1] ([15]) (from now on, almost everywhere means
Lebesgue measure almost everywhere),

0 ≤ f ′(x) < ∞.

However, we say that f ′(x) exists in a wide sense if f ′(x) exists and 0 ≤ f ′(x) ≤
∞ (cf. [14]).
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From now on dim(E) denotes the Hausdorff dimension of E and Dim(E)
denotes the packing dimension of E ([10]). We note that dim(E) ≤ Dim(E)
for every set E ([10]). We denote n0(x|k) the number of times the digit 0
occurs in the first k places of x = σ (cf. [1]). In Fa, for r ∈ [0, 1], we define the
lower(upper) distribution set F (r)(F (r)) containing the digit 0 in proportion r
by

F (r) = {x ∈ (0, 1] : lim inf
k→∞

n0(x|k)
k

= r},

F (r) = {x ∈ (0, 1] : lim sup
k→∞

n0(x|k)
k

= r}.

We write F (r) ∩ F (r) = F (r) and call it the distribution set containing
the digit 0 in proportion r. Let p ∈ (0, 1) and denote γp a self-similar Borel

probability measure on (0, 1] satisfying γp(I0) = p (cf. [1, 10]). We write E(p)
α

(E
(p)

α ) for the set of points at which the lower(upper) local cylinder density of
γp on (0, 1] is exactly α, so that

E(p)
α = {x ∈ (0, 1] : lim inf

k→∞

log γp(ck(x))

log |ck(x)|
= α},

E
(p)

α = {x ∈ (0, 1] : lim sup
k→∞

log γp(ck(x))

log |ck(x)|
= α}.

We write E(p)
α ∩ E

(p)

α = E
(p)
α and call it the local dimension set having lo-

cal dimension α by a self-similar measure γp. In this paper, we assume that
0 log 0 = 0 for convenience. We introduce the relation between the distribution
sets and the local dimension sets, which is an essential result from [1].

Proposition 1. Let p ∈ (0, 1), r ∈ [0, 1] and g(r, p) = r log p+(1−r) log(1−p)
r log a+(1−r) log(1−a) .

Then in Fa = (0, 1],

(1) F (r) = E
(p)
g(r,p) if 0 < p < a,

(2) F (r) = E
(p)

g(r,p) if a < p < 1,

(3) F (r) = E
(p)

g(r,p) if 0 < p < a,

(4) F (r) = E
(p)
g(r,p) if a < p < 1.

Proof. It follows from the same arguments of the proof of the Theorems 2 in
[1, 2]. □

From now on, we will continue to use g(r, p) as above.

3. Characterizations of the derivative sets and the
non-differentiability set

Lemma 2. Let {αn} and {α′
n} be positive real sequences and {βn} and {β′

n}
be real sequences. If limn→∞

βn

αn
= limn→∞

β′
n

α′
n

= c for some real number c,

then limn→∞
βn+β′

n

αn+α′
n
= c.
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Proof. Noting that αn + α′
n > 0, we easily obtain the result. □

Lemma 3. Let f : (0, 1] −→ (0, 1] be a differentiable function at a point
x ∈ (0, 1). Then the derivative f ′(x) of f at x satisfies the following condition:

lim
n→∞

f(zn)− f(yn)

zn − yn
= f ′(x),

where yn ↑ x and zn ↓ x.

Proof. Since f ′(x) exists and its value is a real number, we clearly see that

lim
y↑x

f(x)− f(y)

x− y
= lim

z↓x

f(z)− f(x)

z − x
= f ′(x).

For all sequences {yn} and {zn} such that yn ↑ x and zn ↓ x, we also see that

lim
n→∞

f(x)− f(yn)

x− yn
= lim

n→∞

f(zn)− f(x)

zn − x
= f ′(x).

It follows from the above lemma. □

Theorem 4. Let f : Fa → Fp be the base transformed identical code function
such that f([σ](a)) = [σ](p) where 0 < p < 1. Then the derivative f ′(x) of f
at x exists for almost every point x ∈ (0, 1]. Further it satisfies the following
condition:

0 ≤ lim
n→∞

γp(cn(x))

|cn(x)|
= f ′(x) < ∞,

where γp is a self-similar probability measure on (0, 1] satisfying γp(I0) = p and
p ∈ (0, 1).

Proof. Since f is a strictly increasing function from (0, 1] onto (0, 1], the deriv-
ative f ′(x) of f at x exists for almost every point x ∈ (0, 1] (Remark 1). If we
put cn(x) = (yn, zn], then we clearly see that γp(cn(x)) = f(zn) − f(yn). To
apply this to the above lemma, we should exclude the point x such that x = yn
or x = zn. Such x is only an end point of a fundamental interval. It follows
from the above lemma since the derivative f ′(x) of f at x does not exist for an
end point x of a fundamental interval. □

Theorem 5. Let f : Fa → Fp be the base transformed identical code function
such that f([σ](a)) = [σ](p). For x ∈ (0, 1] at which f ′(x) exists and 0 < f ′(x) <
∞,

lim
n→∞

log γp(cn(x))

log |cn(x)|
= 1.

Proof. Since log function is a continuous function,

lim
n→∞

log
γp(cn(x))

|cn(x)|
= log f ′(x).

It follows easily since 0 < f ′(x) < ∞. □
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Theorem 6. Let f : Fa → Fp be the base transformed identical code function
such that f([σ](a)) = [σ](p). Assume that p ̸= a. Then

{x ∈ (0, 1] : 0 < f ′(x) < ∞} ⊂ E
(p)
1

with dim(E
(p)
1 ) < 1, hence the derivative f ′(x) = 0 for almost every point

x ∈ (0, 1].

Proof. From the above theorem, if x ∈ (0, 1] at which f ′(x) exists and 0 <

f ′(x) < ∞ then such x ∈ E
(p)
1 . Since p ̸= a, we have r ̸= a when g(r, p) = 1,

which gives g(r, r) < 1. From Corollary 7 (1) in [2], we have

dim(E
(p)
1 ) = g(r, r) < 1,

where E
(p)
1 ⊂ Fa = (0, 1]. This means that the Lebesgue measure of the set

E
(p)
1 is 0. It follows from that 0 ≤ f ′(x) < ∞ for almost every point x ∈ (0, 1]

from Remark 1. □

Remark 2. P. Billingsley ([4]) essentially showed that {x ∈ (0, 1] : 0 < f ′(x) <
∞} = ϕ using the fact that

lim
n→∞

|γp(cn+1(x))

γp(cn(x))
− |cn+1(x)|

|cn(x)|
| = 0

for x ∈ {x ∈ (0, 1] : 0 < f ′(x) < ∞} whereas |γp(cn+1(x))
γp(cn(x))

− |cn+1(x)|
|cn(x)| | = |p−a| ̸=

0. We give our multifractal spectrum method as an alternative of Billingsley’s
direct method to show that f is a singular function.

From now on, without any additional condition we assume that f : Fa → Fp

is the base transformed identical code function such that f([σ](a)) = [σ](p)
where 0 < p(̸= a) < 1 and r(1) denotes the solution r of the equation g(r, p) =
1.

Remark 3. Let N = (0, 1]− (D0 ∪D∞ ∪D1) where

D0 = {x ∈ (0, 1] : f ′(x) = 0},
D∞ = {x ∈ (0, 1] : f ′(x) = ∞},
D1 = {x ∈ (0, 1] : 0 < f ′(x) < ∞}.

Then N = (0, 1] − (D0 ∪ D∞) since D1 = ϕ from Remark 2. Further N is
the set of the points x at which the derivatives f ′(x) of f do not exist. As we
mentioned earlier, the end points of any fundamental dyadic interval are in N .
From now on, we will continue to use D0, D∞, N as above.

We give some characterizations of the points x where f ′(x) = 0 and f ′(x) =
∞ respectively when a < p < 1 using distribution sets.

Theorem 7. Let a < p < 1. Then

D0 ⊂ ∪0≤r≤r(1)F (r) and D∞ ⊂ ∪r(1)≤r≤1F (r).
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Proof. We note that lim infn→∞
log γp(cn(x))
log |cn(x)| > 1 implies limn→∞

γp(cn(x))
|cn(x)| =

0. It is not difficult to show that g(r, p) is a decreasing function for r when

a < p < 1. Since E
(p)
g(r(1),p) = E

(p)
1 and g(r, p) is a decreasing function for

r, if x ∈ E
(p)
g(r,p) where 0 ≤ r < r(1), then limn→∞

γp(cn(x))
|cn(x)| = 0. Using

its contraposition and Lemma 3, we easily see that D∞ ⊂ ∪r(1)≤r≤1E
(p)
g(r,p).

It follows from that E
(p)
g(r,p) = F (r) from Proposition 1. Similarly we note

that lim supn→∞
log γp(cn(x))
log |cn(x)| < 1 implies limn→∞

γp(cn(x))
|cn(x)| = ∞. Therefore

if x ∈ E
(p)

g(r,p) where r(1) < r ≤ 1, then limn→∞
γp(cn(x))
|cn(x)| = ∞. Using its

contraposition and Lemma 3, we easily see that D0 ⊂ ∪0≤r≤r(1)E
(p)

g(r,p). It

follows from that E
(p)

g(r,p) = F (r) from Proposition 1. □

Dually we easily see the similar results for the points x where f ′(x) = 0 and
f ′(x) = ∞ respectively when 0 < p < a using distribution sets.

Theorem 8. Let 0 < p < a. Then

D0 ⊂ ∪r(1)≤r≤1F (r) and D∞ ⊂ ∪0≤r≤r(1)F (r).

Proof. It is not difficult to show that g(r, p) is an increasing function for r
when 0 < p < a. It follows from the dual arguments of the proof of the above
theorem. □

To avoid a degeneration case, we exclude the end points of the fundamental
intervals for the following two theorems.

Theorem 9. Assume that x is not an end point of a fundamental interval. If

limn→∞
γp(cn(x))
|cn(x)| = 0, then

lim
n→∞

f(x)− f(yn)

x− yn
= 0 = lim

n→∞

f(zn)− f(x)

zn − x
,

where yn is the left end point of cn(x) and zn is the right end point of cn(x).

Similarly if limi→∞
γp(cni

(x))

|cni
(x)| = 0, then

lim
i→∞

f(x)− f(yni)

x− yni

= 0 = lim
i→∞

f(zni)− f(x)

zni − x
,

where yni is the left end point of cni(x) and zni is the right end point of cni(x).

Proof. We note that x has the generalized dyadic expansion with a base a

where 0 < a < 1. Suppose that it does not hold that limn→∞
f(x)−f(yn)

x−yn
= 0.

Then for some ϵ > 0 there are infinitely many n such that f(x)−f(yn)
x−yn

> ϵ. We

may assume that
f(x)−f(ynk

)

x−ynk
> ϵ for all k ∈ N for some subsequence {ynk

}
of distinct members such that yn1 < yn2 < · · · < ynk

< ynk+1
< · · · of the

sequence {yn} since x is not an end point of a fundamental interval.
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Assume that limk→∞
f(x)−f(ynk

)

znk
−ynk

̸= 0. Then we easily see that there exists a

subsequence {ynkj
} of the sequence {ynk

} and
f(x)−f(ynkj

)

znkj
−ynkj

> η for some η > 0

and for all j ∈ N. Hence η ≤
f(znkj

)−f(ynkj
)

znkj
−ynkj

=
γp(cnkj

(x))

|cnkj
(x)| for all j ∈ N, which

is a contradiction. Hence limk→∞
f(x)−f(ynk

)

znk
−ynk

= 0. Therefore for δ such that

0 < δ < aϵ
2 , there exists an integer M such that 0 <

f(x)−f(ynk
)

znk
−ynk

< δ for all

k ≥ M . Since ynk
↑ x and yn1 < yn2 < · · · < ynk

< ynk+1
< · · · , we can find

ik = max{i ∈ N ∪ {0} : ynk
= · · · = ynk+i}.

Let mk = nk + ik. Then
|cmk

(x)|
x−ymk

≤ ai(1−a)mk−i

ai(1−a)mk−ia
= 1

a where |cmk
(x)| =

ai(1− a)mk−i for some integer i. Suppose that limk→∞
f(x)−f(ymk

)

zmk
−ymk

= 0. Then

there exists an integer L ≥ M such that 0 <
f(x)−f(ymk

)

zmk
−ymk

< δ for all k ≥ L.

Since ymk
= ynk

, we easily see that ϵ(x−ymk
) < f(x)−f(ymk

) < δ(zmk
−ymk

)

for all k ≥ L. Since zmk
− ymk

= |cmk
(x)|, 2

a < ϵ
δ <

|cmk
(x)|

x−ymk
≤ 1

a for

all k ≥ L, which is a contradiction. Since limk→∞
f(x)−f(ymk

)

zmk
−ymk

̸= 0, we also

have a subsequence {ymkj
} of the sequence {ymk

} such that
f(zmkj

)−f(ymkj
)

zmkj
−ymkj

=

γp(cmkj
(x))

|cmkj
(x)| ≥ η′ > 0 for some η′ > 0 and for all j ∈ N, which gives a con-

tradiction. limn→∞
f(zn)−f(x)

zn−x = 0 follows from the similar arguments. The
subsequential result also holds from the same arguments above. □

Theorem 10. Assume that x is not an end point of a fundamental interval.

If limn→∞
γp(cn(x))
|cn(x)| = ∞, then

lim
n→∞

f(x)− f(yn)

x− yn
= ∞ = lim

n→∞

f(zn)− f(x)

zn − x
,

where yn is the left end point of cn(x) and zn is the right end point of cn(x).

Similarly if limi→∞
γp(cni

(x))

|cni
(x)| = ∞, then

lim
i→∞

f(x)− f(yni)

x− yni

= ∞ = lim
i→∞

f(zni)− f(x)

zni − x
,

where yni is the left end point of cni(x) and zni is the right end point of cni(x).

Proof. It follows from the same arguments of the proof of the above theorem.
□

The following two corollaries are our characterizations of the null derivative
set, the infinite derivative set and the non-differentiability set of the RNT
singular function using distribution sets.
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Corollary 11.

[∪r(1)<r≤1F (r)] ∩ [∪0≤r<r(1)F (r)] ⊂ N.

Proof. We only need to show that f ′(x) does not exist for

x ∈ [∪r(1)<r≤1F (r)] ∩ [∪0≤r<r(1)F (r)].

It is not difficult to show that

lim inf
n→∞

log γp(cn(x))

log |cn(x)|
< 1

and

lim sup
n→∞

log γp(cn(x))

log |cn(x)|
> 1

for

x ∈ [∪r(1)<r≤1F (r)] ∩ [∪0≤r<r(1)F (r)]

from Proposition 1. This implies that

lim sup
n→∞

γp(cn(x))

|cn(x)|
= ∞

and

lim inf
n→∞

γp(cn(x))

|cn(x)|
= 0.

Since x is not an end point of a fundamental interval, it follows from the
subsequential results of the above two theorems. □

Corollary 12. For a < p < 1,

∪0≤r≤r(1)F (r)− F (r(1)) ⊂ D0 ∪N,

∪r(1)≤r≤1F (r)− F (r(1)) ⊂ D∞ ∪N,

further

D0 ⊂ ∪0≤r≤r(1)F (r),

D∞ ⊂ ∪r(1)≤r≤1F (r).

Similarly for 0 < p < a,

∪r(1)≤r≤1F (r)− F (r(1)) ⊂ D0 ∪N,

∪0≤r≤r(1)F (r)− F (r(1)) ⊂ D∞ ∪N,

further

D0 ⊂ ∪r(1)≤r≤1F (r),

D∞ ⊂ ∪0≤r≤r(1)F (r).
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Proof. Let a < p < 1. From Proposition 1, we clearly see that if x ∈
∪0≤r≤r(1)F (r) − F (r(1)), then lim supn→∞

log γp(cn(x))
log |cn(x)| > 1. This implies that

lim infn→∞
γp(cn(x))
|cn(x)| = 0. From Theorem 9, we see that x ̸∈ D∞, which means

x ∈ D0 ∪N .

Similarly if x ∈ ∪r(1)≤r≤1F (r) − F (r(1)), then lim infn→∞
log γp(cn(x))
log |cn(x)| <

1 from Proposition 1. This implies that lim supn→∞
γp(cn(x))
|cn(x)| = ∞, which

means x ∈ D∞ ∪ N from the above theorem. For D0 ⊂ ∪0≤r≤r(1)F (r), we
only need to show that D0 ̸⊂ F (r(1)) − F (r(1)) noting Theorem 7 and the
above corollary. The contraposition of the above argument implies that if
x ̸∈ D∞ ∪ N , then x ̸∈ ∪r(1)≤r≤1F (r) − F (r(1)). This means that if x ∈ D0,
then x ̸∈ F (r(1))− F (r(1)). Similarly it follows that D∞ ⊂ ∪r(1)≤r≤1F (r). It
follows also for 0 < p < a from the dual arguments with Theorem 8. □
Remark 4. From Corollary 11, we see that F (0)∩F (1) ⊂ N . Since F (0)∩F (1)
is comeager in (0, 1] ([12]), which means that the base transformed identical
code function such that f([σ](a)) = [σ](p) where 0 < p(̸= a) < 1 is nowhere
differentiable in the sense of topological magnitude. We also note that its
packing dimension Dim(F (0)∩F (1)) = 1 ([3, 12]). We note that if x is an end
point of a fundamental interval, then x ∈ F (0) ⊂ F (0) and x ∈ N .

Remark 5. Since the set of normal points has Lebesgue measure 1 ([9]) and
D0 has also Lebesgue measure 1, F (a) ∩D0 has Lebesgue measure 1. That is,
almost all of the points of F (a) are in D0 and almost all of the points of D0

are in F (a). Further F (a) ⊂ D0 ∪N from the above corollary.

Theorem 13.

0 < g(r(1), r(1)) ≤ dim(N) ≤ Dim(N) = 1.

Further,
dim(D∞) ≤ Dim(D∞) ≤ g(r(1), r(1)) < 1.

Proof. From Corollary 11, F (r1) ∩ F (r2) ⊂ N for every r1, r2 such that 0 ≤
r1 < r(1) < r2 ≤ 1, which gives dim(N) ≥ inf{g(r1, r1), g(r2, r2)} for ev-
ery r1, r2 such that 0 ≤ r1 < r(1) < r2 ≤ 1 from [2, 13]. Hence dim(N) ≥
g(r(1), r(1)) > 0. Dim(N) = 1 follows from Remark 4. Noting dim(E) ≤
Dim(E) for every set E and g(r(1), r(1)) < 1, we only need to show that
Dim(D∞) ≤ g(r(1), r(1)). For a < p < 1, as we argued in the proof of
Theorem 7, g(r, p) is a decreasing function for r ∈ [0, 1]. We note that

lim infk→∞
n0(x|k)

k = r ⇔ lim supk→∞
log γp(ck(x))
log |ck(x)| = g(r, p) (cf. Lemma 1 in

[1]) and a < r(1) < 1. Hence if r ≥ r(1), then g(r, r(1)) ≤ g(r(1), r(1)). There-

fore if x ∈ ∪r(1)≤r≤1F (r), then lim supk→∞
log γr(1)(ck(x))

log |ck(x)| ≤ g(r(1), r(1)), which

means that Dim(∪r(1)≤r≤1F (r)) ≤ g(r(1), r(1)) from the cylinder density the-
orem in [2, 11] (cf. Proposition 2.3 in [10]).

Dim(D∞) ≤ g(r(1), r(1))
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follows from the above corollary. Dually it holds for 0 < p < a. □

4. Application of the characterizations to (τ, τ − 1)-expansion

In the above section, we used f for the RNT function, but in this section
we will use Φα,τ (x) instead of f for the comparison between our results and
those of [14]. J. Parad́ıs et al. ([14]) studied the RNT singular function Φα,τ (x)
and gave a critical point to check the existence of derivative of the singular

function. The critical point is K = K(α, τ) =
log(α−1

τ−1 )

log(α/τ) . It is not difficult to

show that K = 1
1−r(1) , where r(1) is the solution r of

g(r, p) =
r log p+ (1− r) log(1− p)

r log a+ (1− r) log(1− a)
= 1,

where p = 1
τ and a = 1

α as it is defined in the previous section. J. Parad́ıs et

al. argued in Theorem 4.2 in [14] that for x ∈ (0, 1] where x =
∑∞

j=1
(α−1)j−1

αaj

with positive integers aj such that 1 ≤ a1 < a2 < · · · if

lim inf
n→∞

an
n

> K,

then, if Φ′
α,τ (x) where 1 < τ < α exists in a wide sense, it has to be infinite. The

following lemma gives that the above x ∈ F (r) where r > r(1) = 1− 1
K . From

the above corollary, we have for a < p < 1, ∪r(1)≤r≤1F (r)−F (r(1)) ⊂ D∞∪N .

Putting a = 1
α and p = 1

τ (⇔ 1 < τ < α), we immediately have their arguments.
Similarly J. Parad́ıs et al. ([14]) argued that for x ∈ (0, 1] where x =∑∞
j=1

(α−1)j−1

αaj with positive integers aj such that 1 ≤ a1 < a2 < · · · if

lim sup
n→∞

an
n

< K,

then, if Φ′
α,τ (x) where 1 < τ < α exists in a wide sense, it has to be 0. In this

case, the following lemma gives this x ∈ F (r) where r < r(1) = 1− 1
K . From the

result ∪0≤r≤r(1)F (r)−F (r(1)) ⊂ D0 ∪N in the above corollary for a < p < 1,
we immediately have their arguments. Similarly we have their arguments for
the case τ > α > 1 in Theorem 4.2 in [14] using the above corollary.

In the following lemma, we assume that x =
∑∞

j=1
(α−1)j−1

αaj with positive

integers aj such that 1 ≤ a1 < a2 < · · · as in [14].

Lemma 14. For an extended real number 1 ≤ A ≤ ∞ we have

lim inf
n→∞

an
n

≥ A ⇔ lim inf
m→∞

n0(x|m)

m
≥ 1− 1

A
,

and

lim sup
n→∞

an
n

≤ A ⇔ lim sup
m→∞

n0(x|m)

m
≤ 1− 1

A
.
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Proof. Suppose that lim infn→∞
an

n ≥ A. Consider a positive real number A′

such that A′ < A. Then there is a positive integer M and a real number h such
that an

n > h > A′ where h > A′ for all n ≥ M . Then for all n ≥ M ,

n

an
<

n

hn
=

1

h
<

1

A′ .

For all n ≥ M with an integer i such that 0 ≤ i < an+1 − an,

n

an + i
≤ n

an
<

1

h
<

1

A′ .

We note that x has n as the number of times the digit 1 occurs in the first an
places of the code σ(= x). Denoting n1(x|m) the number of times the digit 1
occurs in the first m places of σ(= x) as we denote n0(x|m) the number of times
the digit 0 occurs in the first m places of x = σ in our Preliminaries, we have
n1(x|m)

m < 1
h < 1

A′ for allm ≥ aM (≥ M). Hence lim supm→∞
n1(x|m)

m ≤ 1
h < 1

A′ .
Since n0(x|m) = m− n1(x|m), we have

lim inf
m→∞

n0(x|m)

m
= 1− lim sup

m→∞

n1(x|m)

m
≥ 1− 1

h
> 1− 1

A′ .

Since A′ is an arbitrary positive real number such that A′ < A, it follows. The

converse follows from that the sequence {n1(x|m)
m } has { n

an
} as its subsequence.

More precisely, if lim infm→∞
n0(x|m)

m ≥ 1− 1
A , then

lim sup
m→∞

n1(x|m)

m
≤ 1

A
.

Hence lim supn→∞
n
an

≤ 1
A . Therefore lim infn→∞

an

n ≥ A.

For the second part, suppose that lim supn→∞
an

n ≤ A. We may assume
that 1 ≤ A < ∞ since A = ∞ gives a trivial case. Consider a real number A′

such that A′ > A. Then there is a positive integer M and a real number h such
that an

n < h < A′ where h < A′ for all n ≥ M . Then for all n ≥ M ,

n

an
>

n

hn
=

1

h
>

1

A′ .

For all n ≥ M with an integer i such that 0 ≤ i < an+1 − an,

n

an+1 − i
=

n+ 1

an+1 − i
− 1

an+1 − i
>

n+ 1

an+1
− 1

an
>

1

h
− 1

an
.

Since an → ∞ as n → ∞, there is a positive integer M ′ ≥ M and a real
number h′ such that n

an+1−i >
1
h′ > 1

A′ where h < h′ < A′ for all n ≥ M ′. So
n1(x|m)

m > 1
h′ > 1

A′ for all m ≥ aM ′(≥ M ′). Hence lim infm→∞
n1(x|m)

m ≥ 1
h′ >

1
A′ . Therefore we have

lim sup
m→∞

n0(x|m)

m
≤ 1− 1

h′ < 1− 1

A′ .
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Since A′ is an arbitrary real number such that A′ > A, it follows. The converse

follows from that the sequence {n1(x|m)
m } has { n

an
} as its subsequence. □

From the above lemma, we easily see that

lim inf
m→∞

n0(x|m)

m
= 1− 1

lim infn→∞
an

n

and

lim sup
m→∞

n0(x|m)

m
= 1− 1

lim supn→∞
an

n

.

As we discussed earlier, the following theorem for the RNT singular function
Φα,τ (x) is a generalization of Theorem 4.2 in [14] which is a main result of [14].
From now on, we assume

Φα,τ (x) =
∞∑
j=1

(τ − 1)j−1

τaj

for

x =
∞∑
j=1

(α− 1)j−1

αaj

with integers 1 ≤ a1 < a2 < · · · < an < · · · with α ̸= τ where α, τ > 1 and

K = K(α, τ) =
log(α−1

τ−1 )

log(α/τ) . We easily see that K(α, τ) ≥ 1.

Theorem 15. If limn→∞
an

n ̸= K, then we have:
(i) Case 1 < τ < α. If

lim sup
n→∞

an
n

≤ K,

then, if Φ′
α,τ (x) exists in a wide sense, it has to be 0. If

lim inf
n→∞

an
n

≥ K,

then, if Φ′
α,τ (x) exists in a wide sense, it has to be ∞.

(ii) Case τ > α > 1.

lim inf
n→∞

an
n

≥ K,

then, if Φ′
α,τ (x) exists in a wide sense, it has to be 0. If

lim sup
n→∞

an
n

≤ K,

then, if Φ′
α,τ (x) exists in a wide sense, it has to be ∞.

Proof. For Case 1 < τ < α, assume that lim infn→∞
an

n ≥ K. The above
lemma gives that

lim inf
m→∞

n0(x|m)

m
≥ 1− 1

K
= r(1).

Since limn→∞
an

n ̸= K, we easily see that x ̸∈ F (r(1)) from the above lemma.
From ∪r(1)≤r≤1F (r)− F (r(1)) ⊂ D∞ ∪N which is a result of Corollary 12 for
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a < p < 1, we immediately have Φ′
α,τ (x) = ∞ if Φ′

α,τ (x) exists in a wide sense.
The rest follows from similar arguments. □

The following theorem is the converse of the above theorem in some sense,
which was not mentioned in [14].

Theorem 16. We have:
(i) Case 1 < τ < α. If Φ′

α,τ (x) = 0, then

lim sup
n→∞

an
n

≤ K.

If Φ′
α,τ (x) = ∞, then

lim inf
n→∞

an
n

≥ K.

(ii) Case τ > α > 1. If Φ′
α,τ (x) = 0, then

lim inf
n→∞

an
n

≥ K.

If Φ′
α,τ (x) = ∞, then

lim sup
n→∞

an
n

≤ K.

Proof. It follows from the above lemma with the results of Corollary 12 which
are not used in the proof of the above theorem. □

The following theorem is a new fact for a sufficient condition for the non-
differentiability points of the RNT singular distribution.

Theorem 17. If lim infn→∞
an

n < K < lim supn→∞
an

n , then Φ′
α,τ (x) does not

exist.

Proof. From the above lemma, if lim infn→∞
an

n < K < lim supn→∞
an

n , then
we easily see that

x ∈ [∪r(1)<r≤1F (r)] ∩ [∪0≤r<r(1)F (r)].

It follows from Corollary 11. □

The following theorem is also an essential generalization of Theorem 4.1 in
[14]. It assures that Φ′

α,τ (x) = 0 for a normal point x ∈ Fa where a = 1
α when

Φ′
α,τ (x) exists in a wide sense.

Theorem 18. If limn→∞
an

n = α
α−1 , then, if Φ

′
α,τ (x) exists in a wide sense,

Φ′
α,τ (x) = 0.

Proof. If limn→∞
an

n = α
α−1 , then x ∈ F ( 1

α ) from the above lemma. From

F ( 1
α ) = F (a) ⊂ D0 ∪N in Remark 5, it follows. □
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