• Title/Summary/Keyword: RING-domain

Search Result 214, Processing Time 0.035 seconds

PRUFER ${\upsilon}$-MULTIPLICATION DOMAINS IN WHICH EACH t-IDEAL IS DIVISORIAL

  • Hwang, Chul-Ju;Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • We give several characterizations of a TV-PVMD and we show that the localization R[X;S]$_{N_{\upsilon}}$ of a semigroup ring R[X;S] is a TV-PVMD if and only if R is a TV-PVMD where $N_{\upsilon}\;=\;\{f\;{\in}\;R[X]{\mid}(A_f)_{\upsilon} = R\}$ and S is a torsion free cancellative semigroup with zero.

  • PDF

Modulation Characteristics of Coupled-Ring Reflector Laser Diode (Coupled-Ring Reflector 레이저 다이오드의 변조 특성)

  • Yun, Pil-Hwan;Kim, Su-Hyeon;Jeong, Yeong-Cheol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.315-316
    • /
    • 2006
  • The modulation bandwidth, wavelength chirp of directly modulated coupled-ring reflector laser diode have been investigated using time-domain modeling. For a specific design, the modulation frequency could be 6 GHz and the frequency chirp could be in the range of $120^{\sim}200$ MHz/mA.

  • PDF

GENTRAL SEPARABLE ALGEBRAS OVER LOCAL-GLOBAL RINGS I

  • Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.61-64
    • /
    • 1993
  • In this paper, we show that if R is a local-global domain then the Question holds. McDonald and Waterhouse in [6] and Estes and Guralnick in [5] introduced the concept of local-global rings (so called rings with many units) independently. A local-global ring is a commutative ring R with 1 satisfying; if a polynomial f in R[ $x_{1}$, .., $x_{n}$] represents a unit over $R_{P}$ for every maximal ideal P in R, then f represents a unit over R. Such rings include semilocal rings, or more generally, rings which are von Neumann regular mod their Jacobson radical, and the ring of all algebraic integers.s.s.

  • PDF

THE CLASS GROUP OF D*/U FOR D AN INTEGRAL DOMAIN AND U A GROUP OF UNITS OF D

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • Let D be an integral domain, and let U be a group of units of D. Let $D^*=D-\{0\}$ and ${\Gamma}=D^*/U$ be the commutative cancellative semigroup under aU+bU=abU. We prove that $Cl(D)=Cl({\Gamma})$ and that D is a PvMD (resp., GCD-domain, Mori domain, Krull domain, factorial domain) if and only if ${\Gamma}$ is a PvMS(resp., GCD-semigroup, Mori semigroup, Krull semigroup, factorial semigroup). Let U=U(D) be the group of units of D. We also show that if D is integrally closed, then $D[{\Gamma}]$, the semigroup ring of ${\Gamma}$ over D, is an integrally closed domain with $Cl(D[{\Gamma}])=Cl(D){\oplus}Cl(D)$; hence D is a PvMD (resp., GCD-domain, Krull domain, factorial domain) if and only if $D[{\Gamma}]$ is.

  • PDF

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Esmaeelnezhad, Afsaneh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.935-946
    • /
    • 2015
  • The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

t-SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT DS IS A FACTORIAL DOMAIN

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.455-462
    • /
    • 2013
  • Let D be an integral domain, S be a saturated multi-plicative subset of D such that $D_S$ is a factorial domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates, and $D[\{X_{\alpha}\}]$ be the polynomial ring over D. We show that S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). We use this result to show that $D{\backslash}\{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[\{X_{\alpha}\}]$ if and only if D is a GCD-domain (resp., UMT-domain with $Cl(D[\{X_{\alpha}\}]$ torsion UMT-domain).

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq;Kim, Hwankoo;Mahdou, Najib
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1095-1106
    • /
    • 2020
  • The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.

Identification of a Domain in Yeast Chitin Synthase 3 Required for Biogenesis of Chitin Ring, But Not Cellular Chitin Synthesis

  • Park Hyun-Sook;Park Mee-Hyun;Kim Chi-Hwa;Woo Jeeun;Lee Jee-Yeon;Kim Sung-Uk;Choi Wonja
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.39-45
    • /
    • 2000
  • It hab been proposed that CHS3-mediated chitin synthesis during the vegitative cell cycle is regulated by CHS4. To investigate direct protein-protein interaction between their coding products, we used yeast two hybrid system and found that a domain of Chs3p was responsible for interaction with Chs4p. This domain, termed MIRC3-4 (maximum interacting region of chs3p with chs4p), spans from 647 to 700 residues. It is well conserved among CHS3 homologs of various fungi such as Candida albicans, Emericella nidulans, Neurospora crassa, Magnaporthe grisea, Ustilago maydis, Glomus versiforme, Exophiala dermatitidis, Rhizopus microsporus. A series of mutaion in the MIRC3-4 resulted in no appearance of chitin ring at the early G 1 phase but did not affect chitin synthesis in the cell wall after cytokinesis. Absence of chitin ring could be caused either by delocalization of Chs3p to the septum or by improper interaction with Chs4p. To discriminate those two, not mutually exclusive, alternatives, mutants cells were immunostained with Chs3p-specific antibody. Some exhibited localization of chs3p to the septum, while others failed. These results indicate that simultaneous localization and activation Chs3p by Chs4p is required for chitin ring synthesis.

  • PDF

FACTORIZATION AND DIVISIBILITY IN GENERALIZED REES RINGS

  • Kim, Hwan-Koo;Kwon, Tae-In;Park, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.473-482
    • /
    • 2004
  • Let D be an integral domain, I a proper ideal of D, and R =D[It, $t^{-1}$] a generalized Rees ring, where t is an indeterminate. For suitable conditions, we show that R satisfies the ACCP (resp., is a BFD, an FFD, a (pre-) Schreier domain, a G-GCD domain, a PVMD, a v-domain) if and only if D satisfies the ACCP (resp., is a BFD, an FFD, a (pre-) Schreier domain, a G-GCD domain, a PVMD, a v-domain).