• Title/Summary/Keyword: RF Receiver

Search Result 478, Processing Time 0.024 seconds

Design And Component Performance Analysis of RF System for W-CDMA Receiver (W-CDMA 수신기 RF System 설계 및 부품 성능 분석)

  • 지만구;이규헌;김학선
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.197-200
    • /
    • 2000
  • In this paper, The RF system of W-CDMA receiver is designed and the performance is analyzed. The linearity characteristic and the noise characteristic are presented in the performance. The linearity characteristic is analyzed by PN and IIP3. The noise characteristic is analyzed by NF. In addition, sweeping of the nonlinear components parameter affecting the linear performance is tested and the most maximal possible parameter to maintain the linear performance is introduced. The transceiver RF system of W-CDMA and cdma2000 is designed and presented adapting the nonlinear parameter introduced.

  • PDF

Development of a GPS Receiver Platform with High Resolution to Design of Interference Excision Filters (간섭신호 감쇄필터 설계를 위한 고분해능의 GPS 수신기 플랫폼 개발)

  • Kim, Yong-Hyun;Cho, Jong-Chul;Liu, Mei Lin;Lim, Deok-Won;Shin, Mi-Young;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1073-1080
    • /
    • 2008
  • A GPS receiver platform has been developed to design an interference rejection filter and the platform is also able to evaluate performance of those filters. This platform consists of RF/IF part, data acquisition part and PC part. The RF/IF part converts RF signals to IF signals, the data acquisition part transmits the IF signals to PC using USB device. The PC part rejects the interferences with a filter and then it does navigation with GPS software receiver. The RF/IF part and data acquisition part had been validated with signal spectrum, and the PC part had been validated with the navigation results of GPS receiver. Finally, the entire platform including interference rejection filter has been confirmed with the navigation results in case that the GPS signals and interference entered this platform. As a result, the GPS receiver operated well against interference with 45dB JSR.

System Design Considerations for a ZigBee RF Receiver with regard to Coexistence with Wireless Devices in the2.4GHz ISM-band

  • Seo, Hae-Moon;Park, Yong-Kuk;Park, Woo-Chool;Kim, Dong-Su;Lee, Myung-Soo;Kim, Hyeong-Seok;Choi, Pyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • At the present time the task of designing a highly integrated ZigBee radio frequency (RF) receiver with an excellent coexistence performance is still very demanding and challenging. This paper presents a number of system issues and design considerations for a ZigBee RF receiver, namely IEEE 802.15.4, for coexistence with wireless devices in the 2.4-GHz ISM-band. With regard to IEEE 802.15.4, the paper analyzes receiver performance requirements for; system noise figure (NF), system third-order intercept point (system-IIP3), local oscillator phase noise and selectivity. Based on some assumptions, the paper illustrates the relationship between minimum detectable signal (MDS) and various situations that involve the effects of electromagnetic interference generated by other wireless devices. We infer the necessity of much more stringent specification requirements than the published standard for various wireless communication field environments

Design of a High Dynamic-Range RF ASIC for Anti-jamming GNSS Receiver

  • Kim, Heung-Su;Kim, Byeong-Gyun;Moon, Sung-Wook;Kim, Se-Hwan;Jung, Seung Hwan;Kim, Sang Gyun;Eo, Yun Seong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.115-122
    • /
    • 2015
  • Global Positioning System (GPS) is used in various fields such as communications systems, transportation systems, e-commerce, power plant systems, and up to various military weapons systems recently. However, GPS receiver is vulnerable to jamming signals as the GPS signals come from the satellites located at approximately 20,000 km above the earth. For this reason, various anti-jamming techniques have been developed for military application systems especially and it is also required for commercial application systems nowadays. In this paper, we proposed a dual-channel Global Navigation Satellite System (GNSS) RF ASIC for digital pre-correlation anti-jam technique. It not only covers all GNSS frequency bands, but is integrated low-gain/attenuation mode in low-noise amplifier (LNA) without influencing in/out matching and 14-bit analogdigital converter (ADC) to have a high dynamic range. With the aid of digital processing, jamming to signal ratio is improved to 77 dB from 42 dB with proposed receiver. RF ASIC for anti-jam is fabricated on a 0.18-μm complementary metal-oxide semiconductor (CMOS) technology and consumes 1.16 W with 2.1 V (low-dropout; LDO) power supply. And the performance is evaluated by a kind of test hardware using the designed RF ASIC.

Design of RF Receiver using Independent-Gate-Mode Double-Gate MOSFET (Independent-Gate-Mode Double-Gate MOSFET을 이용한 RF Receiver 설계)

  • Jeong, Na-Rae;Kim, Yu-Jin;Yun, Ji-Sook;Park, Sung-Min;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.16-24
    • /
    • 2009
  • Independent-gate-mode double-gate(IGM-DG) MOSFET overcomes the limitation of 3-terminal device structure, and enables to operate with different voltages for front-gate and back-gate. Therefore, circuit designs becomes not only simple, but also area-efficient due to the controllability of the 4th terminal provided by IGM-DG MOSFETs. In this paper, an RF receiver utilizing IGM-DG MOSFETs is presented and also, the circuit performance is verified by the HSPICE simulations. Besides, the circuit analysis and optimization are performed for various IGM-DG characteristics.

An Integrated Si BiCMOS RF Transceiver for 900 MHz GSM Digital Handset Application (I) : RF Receiver Section (900MHz GSM 디지털 단말기용 Si BiCMOS RF송수신 IC개발 (I) : RF수신단)

  • Park, In-Shig;Lee, Kyu-Bok;Kim, Jong-Kyu;Kim, Han-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.9-18
    • /
    • 1998
  • A single RF transceiver chip for an extended GSM handset application was designedm, fabricated and evaluated. A RFIC was fabricated by using silicon BiCMOS process, and then packaged in 80 pin TQFP of $10 {\times} 10 mm^{2}$ in size. As a result, it was achieved guite reasonable integraty and good RF performance at the operation voltage of 3.3V. This paper describes development results of RF receiver section of the RFIC, which includes LNA, down conversion mixer, AGC, switched capacitor filter and down sampling mixer. The test results show that RF receiver section is well operated within frequency range of 925 ~960 MHz, which is defined on the extended GSM specification (E-GSM). The receiver section also reveals moderate power consumption of 67 mA and minimum detectable signal of -105 dBm.

  • PDF

Software GNSS Receiver for Signal Experiments

  • Kovar, Pavel;Seidl, Libor;Spacek, Josef;Vejrazka, Frantisek
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.391-394
    • /
    • 2006
  • The paper deals with the experimental GNSS receiver built at the Czech Technical University for experiments with the real GNSS signal. The receiver is based on software defined radio architecture. Receiver consists of the RF front end and a digital processor based on programmable logic. Receiver RF front end supports GPS L1, L2, L5, WAAS/EGNOS, GALILEO L1, E5A, E5B signals as well as GLONASS L1 and L2 signals. The digital processor is based on Field Programmable Gate Array (FPGA) which supports embedded processor. The receiver is used for various experiments with the GNSS signals like GPS L1/EGNOS receiver, GLONASS receiver and investigation of the EGNOS signal availability for a land mobile user. On the base of experimental GNSS receiver the GPS L1, L2, EGNOS receiver for railway application was designed. The experimental receiver is also used in GNSS monitoring station, which is independent monitoring facility providing also raw monitoring data of the GPS, EGNOS and Galileo systems via internet.

  • PDF

A Study on the Implementation and Performance Analysis of Software Based GPS L1 and Galileo E1/E5a Signal Processing (소프트웨어 기반의 GPS L1 및 갈릴레오 E1/E5a 신호 처리 구현 및 성능에 관한 연구)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Won;Kim, Jae-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.319-326
    • /
    • 2009
  • In this paper, the key technologies of Navigation receiver for GNSS sensor station are presented as a development result of a GNSS ground station in ETRI. A wide-band antenna and RF/IF components and SW signal processing unit to cover the GPS and Galileo signals for GNSS receiver are developed and its performance is verified by using GPS live signal and GNSS RF signal simulator from SpirentTM. We also gather GIOVE-A signal by using H/W antenna and RF/IF units in IF-level as sampling frequency and bit number, 112MHz and 8bits, respectively by using the developed wide-band antenna and RF/IF components. Data acquisition is done by using commercial data acquisition device from National Instrument TM. The gathered data is fed into SW receiver to process Galileo E1 to verify Galileo signal processing by Galileo live signal from GIOVE-A.

  • PDF

Phase Offset Correction using Early-Late Phase Compensation in Direct Conversion Receiver (직접 변환 수신기에서 Early-Late 위상 보상기를 사용한 위상 오차 보정)

  • Kim Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.638-646
    • /
    • 2005
  • In recent wireless communications, direct conversion transceiver or If sampling SDR-based receivers have being designed as an alternative to conventional transceiver topologies. In direct conversion receiver a.chitectu.e, the 1.equency/phase offset between the RF input signal and the local oscillator signal is a major impairment factor even though the conventional AFC/APC compensates the service deterioration due to the offset. To rover the limited tracking range of the conventional method and effectively aid compensation scheme in terms of I/Q channel imbalances, the frequency/phase offset compensation in RF-front end signal stage is proposed in this paper. In RF-front end, the varying phase offset besides the fixed large frequency/phase offset are corrected by using early-late phase compensator. A more simple frequency and phase tacking function in digital signal processing stage of direct conversion receiver is effectively available by an ingenious frequency/phase offset tracking method in RF front-end stage.

A Non-coherent IR-UWB RF Transceiver for WBAN Applications in 0.18㎛ CMOS (0.18㎛ CMOS 공정을 이용한 WBAN용 비동기식 IR-UWB RF 송수신기)

  • Park, Myung Chul;Chang, Won Il;Ha, Jong Ok;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.36-44
    • /
    • 2016
  • In this paper, an Impulse Radio-Ultra Wide band RF Transceiver for WBAN applications is implemented in $0.18{\mu}m$ CMOS technology. The designed RF transceiver support 3-5GHz UWB low band and employs OOK(On-Off Keying) modulation. The receiver employs non-coherent energy detection architecture to reduce complexity and power consumption. For the rejection of the undesired interferers and improvement of the receiver sensitivity, RF active notch filter is integrated. The VCO based transmitter employs the switch mechanism. As adapt the switch mechanism, power consumption and VCO leakage can be reduced. Also, the spectrum mask is always same at each center frequency. The measured sensitivity of the receiver is -84.1 dBm at 3.5 GHz with 1.579 Mbps. The power consumption of the transmitter and receiver are 0.3nJ/bit and 41 mW respectively.