• 제목/요약/키워드: RF MEMS packaging

검색결과 20건 처리시간 0.034초

Au-Sn 공정 접합을 이용한 RF MEMS 소자의 Hermetic 웨이퍼 레벨 패키징 (Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging)

  • ;김운배;좌성훈;정규동;황준식;이문철;문창렬;송인상
    • 마이크로전자및패키징학회지
    • /
    • 제12권3호
    • /
    • pp.197-205
    • /
    • 2005
  • RF MEMS 기술에서 패키지의 개발은 매우 중요하다. RF MEMS 패키지는 소형화, hermetic 특성, 높은 RF 성능 및 신뢰성을 갖도록 설계되어야 한다. 또한 가능한 저온의 패키징 공정이 가능해야 한다. 본 연구에서는 저온 공정을 이용한 RF MEMS 소자의 hermetic 웨이퍼 레벨 패키징을 제안하였다. Hermetic sealing을 위하여 약 $300{\times}C$의 Au-Sn 공정 접합 (eutectic bonding) 기술을 사용하였으며, Au-Sn의 조합으로 형성된 sealing부의 폭은 $70{\mu}m$이었다. 소자의 전기적 연결을 위하여 기판에 수직 via hole을 형성하고 전기도금 (electroplating) 방법을 이용하여 Cu로 채웠다. 완성된 RF MEMS 패키지의 최종 크기는 $1mm\times1mm\times700{\mu}m$이었다. 패키징 공정의 최적화 및 $O_2$ 플라즈마 애싱 공정을 통하여 접합 계면 및 via hole의 void들을 제거할 수 있었다. 또한 패키지의 전단 강도 및 hermeticity는 MIL-STD-883F의 규격을 만족하였으며 패키지 내부에서 오염 및 기타 유기 물질은 발생하지 않았다. 패키지의 삽입 손실은 2 GHz에서 0.075 dB로 매우 작았으며, 여러 종류의 신뢰성 시험 결과 패키지의 파손 및 성능의 감소는 발견되지 않았다.

  • PDF

TOC (Transceiver-on-Chip)를 위한 RF MEMS (Micro Electromechanical Systems) 기술

  • 전국진;성우경
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.55-60
    • /
    • 2001
  • RF MEMS is an exciting emerging technology that has great potential to develop TOC (Transceiver-on-Chip). Applications of the RF MEMS to wireless communications systems are presented. The ability of the RF MEMS technology to enhance the performance and to reduce the size of passive components, in particular, switches, inductors, and tunable capacitors, is addressed. A number of potential wireless system opportunities for the TOC are awaiting the maturation of the RF MEMS technology.

  • PDF

Ultra Thin 실리콘 웨이퍼를 이용한 RF-MEMS 소자의 웨이퍼 레벨 패키징 (Wafer Level Packaging of RF-MEMS Devices with Vertical feed-through)

  • 김용국;박윤권;김재경;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1237-1241
    • /
    • 2003
  • In this paper, we report a novel RF-MEMS packaging technology with lightweight, small size, and short electric path length. To achieve this goal, we used the ultra thin silicon substrate as a packaging substrate. The via holes lot vortical feed-through were fabricated on the thin silicon wafer by wet chemical processing. Then, via holes were filled and micro-bumps were fabricated by electroplating. The packaged RF device has a reflection loss under 22 〔㏈〕 and a insertion loss of -0.04∼-0.08 〔㏈〕. These measurements show that we could package the RF device without loss and interference by using the vertical feed-through. Specially, with the ultra thin silicon wafer we can realize of a device package that has low-cost, lightweight and small size. Also, we can extend a 3-D packaging structure by stacking assembled thin packages.

실리콘 RF MEMS SPDT 스위치를 이용한 패키지 형태의 편파 스위칭 안테나 (Package-type polarization switching antenna using silicon RF MEMS SPDT switches)

  • 현익재;정진우;임성준;김종만;백창욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1511_1512
    • /
    • 2009
  • This paper presents a polarization switching antenna integrated with silicon RF MEMS SPDT switches in the form of a package. A low-loss quartz substrate made of SoQ (silicon-on-quartz) bonding is used as a dielectric material of the patch antenna, as well as a packaging lid substrate of RF MEMS switches. The packaging/antenna substrate is bonded with the bottom substrate including feeding lines and RF MEMS switches by BCB adhesive bonding, and RF energy is transmitted from signal lines to antenna by slot coupling. Through this approach, fabrication complexity and degradation of RF performances of the antenna due to the parasitic effects, which are all caused from the packaging methods, can be reduced. This structure is expected to be used as a platform for reconfigurable antennas with RF MEMS tunable components. A linear polarization switching antenna operating at 19 GHz is manufactured based on the proposed method, and the fabrication process is carefully described. The s-parameters of the fabricated antenna at each state are measured to evaluate the antenna performance.

  • PDF

RF-MEMS 소자를 위한 저손실 웨이퍼 레벨 패키징

  • 박윤권;이덕중;박흥우;송인상;김정우;송기무;박정호;김철주;주병권
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.124-128
    • /
    • 2001
  • We apply for the first time a low cost and loss wafer level packaging technology for RF-MEMS device. The proposed structure was simulated by finite element method (FEM) tool (HFSS of Ansoft). S-parameter measured of the package shows the return loss (S11) of 20dB and the insertion loss (S21) of 0.05dB.

  • PDF

수직형 Feed-through 갖는 RF-MEMS 소자의 웨이퍼 레벨 패키징 (Wafer Level Packaging of RF-MEMS Devices with Vertical Feed-through)

  • 박윤권;이덕중;박흥우;김훈;이윤희;김철주;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제15권10호
    • /
    • pp.889-895
    • /
    • 2002
  • Wafer level packaging is gain mote momentum as a low cost, high performance solution for RF-MEMS devices. In this work, the flip-chip method was used for the wafer level packaging of RF-MEMS devices on the quartz substrate with low losses. For analyzing the EM (electromagnetic) characteristic of proposed packaging structure, we got the 3D structure simulation using FEM (finite element method). The electric field distribution of CPW and hole feed-through at 3 GHz were concentrated on the hole and the CPW. The reflection loss of the package was totally below 23 dB and the insertion loss that presents the signal transmission characteristic is above 0.06 dB. The 4-inch Pyrex glass was used as a package substrate and it was punched with air-blast with 250${\mu}{\textrm}{m}$ diameter holes. We made the vortical feed-throughs to reduce the electric path length and parasitic parameters. The vias were filled with plating gold. The package substrate was bonded with the silicon substrate with the B-stage epoxy. The loss of the overall package structure was tested with a network analyzer and was within 0.05 dB. This structure can be used for wafer level packaging of not only the RF-MEMS devices but also the MEMS devices.

LTCC를 이용한 RF MEMS 소자의 실장법 (LTCC-Based Packaging Technology for RF MEMS Devices)

  • 황근철;박재형;백창욱;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1972-1975
    • /
    • 2002
  • In this paper, we have proposed low temperature co-fired ceramic (LTCC) based packaging for RF MEMS devices. The packaging structure is designed and evaluated with 3D full field simulation. 50 ${\Omega}$ matched coplanar waveguide(CPW) transmission line is employed as the test vehicle to evaluate the performances of the proposed package structure. The line is encapsulated with the LTCC packaging lid and connected to the via feed line. To reduce the insertion loss due to the packaging lid, the cavity with via post is formed in the packaging lid. The performances of the package structure is simulated with the different cavity depth and via-to-via length. Simulation results show that the proposed package structure has reflection loss better than 20 dB and insertion loss lower than 0.1 dB from DC to 30 GHz with the cavity depth and via-to-via length of 300 ${\mu}m$ and 350 ${\mu}m$, respectively. To realize the designed package structure, the cavity patterning is tested using the sandblast of LTCC.

  • PDF

금/주석 공융점 접합과 유리 기판의 건식 식각을 이용한 고주파 MEMS 스위치의 기판 단위 실장 (Wafer-Level Package of RF MEMS Switch using Au/Sn Eutectic Bonding and Glass Dry Etch)

  • 강성찬;장연수;김현철;전국진
    • 센서학회지
    • /
    • 제20권1호
    • /
    • pp.58-63
    • /
    • 2011
  • A low loss radio frequency(RF) micro electro mechanical systems(MEMS) switch driven by a low actuation voltage was designed for the development of a new RF MEMS switch. The RF MEMS switch should be encapsulated. The glass cap and fabricated RF MEMS switch were assembled by the Au/Sn eutectic bonding principle for wafer-level packaging. The through-vias on the glass substrate was made by the glass dry etching and Au electroplating process. The packaged RF MEMS switch had an actuation voltage of 12.5 V, an insertion loss below 0.25 dB, a return loss above 16.6 dB, and an isolation value above 41.4 dB at 6 GHz.

RF-MEMS 소자의 웨이퍼 레벨 밀봉 패키징을 위한 열압축 본딩 (Thermocompression bonding for wafer level hermetic packaging of RF-MEMS devices)

  • 박길수;서상원;최우범;김진상;남산;이종흔;주병권
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.58-64
    • /
    • 2006
  • In this study, we describe a low-temperature wafer-level thermocompression bonding using electroplated gold seal line and bonding pads by electroplating method for RF-MEMS devices. Silicon wafers, electroplated with gold (Au), were completely bonded at $320^{\circ}C$ for 30 min at a pressure of 2.5 MPa. The through-hole interconnection between the packaged devices and external terminal did not need metal filling process and was made by gold films deposited on the sidewall of the throughhole. This process was low-cost and short in duration. Helium leak rate, which is measured to evaluate the reliability of bonded wafers, was $2.7{\pm}0.614{\times}10^{-10}Pam^{3}/s$. The insertion loss of the CPW packaged was $-0.069{\sim}-0.085\;dB$. The difference of the insertion loss between the unpackaged and packaged CPW was less than -0.03. These values show very good RF characteristics of the packaging. Therefore, gold thermocompression bonding can be applied to high quality hermetic wafer level packaging of RF-MEMS devices.

AlN Based RF MEMS Tunable Capacitor with Air-Suspended Electrode with Two Stages

  • Cheon, Seong J.;Jang, Woo J.;Park, Hyeon S.;Yoon, Min K.;Park, Jae Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권1호
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a MEMS tunable capacitor was successfully designed and fabricated using an aluminum nitride film and a gold suspended membrane with two air gap structure for commercial RF applications. Unlike conventional two-parallel-plate tunable capacitors, the proposed tunable capacitor consists of one air suspended top electrode and two fixed bottom electrodes. One fixed and the top movable electrodes form a variable capacitor, while the other one provides necessary electrostatic actuation. The fabricated tunable capacitor exhibited a capacitance tuning range of 375% at 2 GHz, exceeding the theoretical limit of conventional two-parallel-plate tunable capacitors. In case of the contact state, the maximal quality factor was approximately 25 at 1.5 GHz. The developed fabrication process is also compatible with the existing standard IC (integrated circuit) technology, which makes it suitable for on chip intelligent transceivers and radios.