• Title/Summary/Keyword: RC work

Search Result 275, Processing Time 0.023 seconds

Service Life Evaluation of RC Column Exposed to Carbonation Considering Time-dependent Crack Pattern (시간의존성 균열 패턴을 고려한 탄산화에 노출된 콘크리트의 확률론적 내구수명 평가)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • RC(Reinfored Concrete) structures exposed to carbonation in urban city have durability degradation with extended service life and cracks in concrete causes a local accelerated carbonation. In the present work, crack effect on carbonation depth is investigated and the service life of RC structure is evaluated considering cracks from early age and time-dependent cracks based on the previous field investigation. DFP(Durability Failure Probability), safety index, and the related service life are calculated considering the time to crack width reaches to maximum crack width(0.3mm). The results with time effect on crack width show lower DFP and longer service life, which seems to be reasonable compared with conservative results from crack effect from initial stage. Furthermore, crack effect is evaluated to be insignificant on DFP and service life. The technique with time-dependent crack effect on carbonation can be effectively used for RC structure containing cracking in use.

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Productivity Analysis of Reinforced Concrete Works and Tower Crane Working Ratio for High-rise Apartment Buildings (초고층 공동주택 RC 공사의 생산성 및 타워크레인 가동율 분석)

  • Kwon, Jihun;Huh, Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • The productivity of rebar-work and form-work was analyzed with data collected from an actual high-rise construction project, and the actual utilization rates of three tower cranes were also investigated. It was found that the average productivity of the form-work increased from 12.00~8.71(㎡/man·day) in the underground and above-ground/lower-floor to 11.94~20.73(㎡/man·day) in the standard floor. Comparing the productivity of core area to outer, the former was found to be about 11% higher. Moreover, the rebar-work productivity of the outer area(1.12 ton/man·day) was approximately 9.6% higher than that of the core area for the standard floor. The average utilization rates of three TC were surveyed to be about 63.49%, and it was revealed that rainy weather(6.1%), strong winds(6.1%), holidays(17.8%), TC lifting work(5.8%), and other failures and repairs(0.07%) were the causes of non-operation. These research results are expected to be beneficial data in planning and managing the process of high-rise RC construction works in the future.

Assessment of Defect Risks in Apartment Projects based on the Defect Classification Framework (효율적인 품질관리를 위한 공동주택 하자위험 분석)

  • Jang, Ho-Myun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.510-519
    • /
    • 2019
  • The aim of this study was to set a defect classification framework and evaluate the defect risks in apartment buildings For this, approximately 15,056 defect items for 133 apartment buildings were examined. As a result of the analysis, the major defect of the RC work was cracks, which were found mainly in public locations. Moreover, the RC work was found to exhibit a high defect risk of water problem and surface appearance, which are highly connected with cracks. Second, the finish work has a high defect risk because it is composed of various work types, and there are many kinds of materials and construction parts involved. Third, the major defects of the waterproof work were incorrect installation and missing tasks, which have high defect risks in the garage. This is because defects that require rework occur mainly in the underground garage. Based on these results, this study proposed countermeasures for defect risk management to be considered in the construction, handover, post-handover, and occupancy phases. These have been set in detail based on the three zones: low frequency high severity (LFHS), low frequency low severity (LFLS), and high frequency low severity (HFLS).

An Analysis of Cost Reduction Potentials for Modular Housing from the Long-term Perspective (장기적 관점에서의 모듈러 주택 공사비 절감기회 분석)

  • Kim, Hu Yong;Ryu, Kuk Mu;Kim, Kyoon Tai;Jun, Young Hun;Kim, Yea Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.124-134
    • /
    • 2018
  • Despite the many advantages of modular housing, low preference for modular housing for consumers who are familiar with RC structure leads to high construction cost of modular housing. The cost of modular buildings is about 130% of that of RC structures, so it is urgent to secure economical efficiency of modular buildings. Therefore, in this study, after calculating the savings amount of modular housing by type of construction work, economic analysis was conducted from a long - term perspective. In order to carry out the research, the authors compiled and analyzed the material cost, labor cost, and expenses incurred by each type of work by reclassifying the statement of the modular housing into the factory production and the site installation. After that, Pareto diagrams were created to find a core work that is included in the cost ratio of about 80%, and selected it as a cost reduction subject. Based on the assumption that the market size of domestic modular housing is similar to the level of modular advanced countries such as Japan and European countries, six cost reduction methods were set up that reflects the characteristics of the modular construction method and used for the expert interviews. Cost saving potentials in percentage from the interview were converted to the amount of savings that can be achieved by each type of method when applying the method. Finally, the findings of the study are expected to suggest long-term directions for technical development for modular construction and cost savings.

An 8b 220 MS/s 0.25 um CMOS Pipeline ADC with On-Chip RC-Filter Based Voltage References (온-칩 RC 필터 기반의 기준전압을 사용하는 8b 220 MS/s 0.25 um CMOS 파이프라인 A/D 변환기)

  • 이명진;배현희;배우진;조영재;이승훈;김영록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.69-75
    • /
    • 2004
  • This work proposes an 8b 220 MS/s 230 mW 3-stage pipeline CMOS ADC with on-chip filers for temperature- and power- insensitive voltage references. The proposed RC low-pass filters improve switching noise performance and reduce reference settling time at heavy R & C loads without conventional off-chip large bypass capacitors. The prototype ABC fabricated in a 0.25 um CMOS occupies the active die area of 2.25 $\textrm{mm}^2$ and shows the measured DNL and INL of maximum 0.43 LSB and 0.82 LSB, respectively. The ADC maintains the SNDR of 43 dB and 41 dB up to the 110 MHz input at 200 MS/s and 220 MS/s, respectively, while the SNDR at the 500 MHz input is degraded as much as only 3 dB than the SNDR at the 110 MHz input.

Numerical formulation of a new solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Suarez-Suarez, Arturo;Dominguez-Ramírez, Norberto;Susarrey-Huerta, Orlando
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.439-458
    • /
    • 2022
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-Of-Freedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Numerical formulation solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Arturo Suarez-Suarez;Norberto Dominguez-Ramirez;Orlando Susarrey-Huerta
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.481-501
    • /
    • 2023
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-OfFreedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Optimum Design of RC Frames Based on the Principle of Divid Parameters (변수분리의 원리를 이용한 RC구조물의 최적설계)

  • 정영식;정석준;김봉익
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.267-272
    • /
    • 1994
  • This work presents a method of optimum design for reinforced concrete building frames with rectangular cross sections. The optimization techniques used is based on the principle of divided parameters. The design variable parameters are divided into two groups, external and internal, and the optimization is also divided into external and internal procedure. This principle overcomes difficulties arising from the presence of two materials in one element, the property peculiar to reinforced concrete. Several search algorithms are tested to verify their accuracy for the external optimization. Among them pattern search algorithms has been found consistent. This work proposes a new method, modified pattern search, and a number of sample problems prove its accuracy and usefulness. Exhaustive search for all local minima in the design spaces for two sample problems has been carried out to understand the nature of the problem. The number of local minima identified is quite more than expected and it has become understood that the researcher's task in this field is to find a better local minimum if not global. The designs produced by the method preposed have been found better than those from other method, and they are in full accord with ACI Building Code Requirments(ACI 318-89).

  • PDF

Probabilistic seismic and fire assessment of an existing reinforced concrete building and retrofit design

  • Miano, Andrea;de Silva, Donatella;Compagnone, Alberto;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.481-494
    • /
    • 2020
  • In this paper, a probability-based procedure to evaluate the performance of existing RC structures exposed to seismic and fire actions is presented. The procedure is demonstrated with reference to an existing old school building, located in Italy. The vulnerability assessment of the building highlights deficiencies under both static and seismic loads. Retrofit operations are designed to achieve the seismic safety. The idea of the work consists in assessing the performance of the existing and retrofitted building in terms of both the seismic and fire resistance. The seismic retrofit and fire resistance upgrading follow different paths, depending on the specific configuration of the building. A good seismic retrofit does not entail an improving of the fire resistance and vice versa. The goal of the current work is to study the variation of response due to the uncertainties considered in records/fire curves selection and to carry out the assessment of the studied RC structure by obtaining fragility curves under the effect of different records/temperature. The results show the fragility curves before and after retrofit operations and both in terms of seismic performance and fire resistance performance, measuring the percent improving for the different limit states.